

Contents

1 Introduction . 4
1.1 Introduction to Type Systems 4

1.1.1 Statically Typed Languages 4
1.1.2 Dynamically Typed Languages 5

1.2 The Simply Typed Lambda Calculus 6
1.2.1 Syntax . 6
1.2.2 Type Checking . 7
1.2.3 Example Type Derivation 7

1.3 System F . 8
1.4 Improvements . 10

2 Dynamically Typed Languages 10
2.1 Python . 10

2.1.1 Code Example . 11
2.1.2 Polymorphism . 12

2.2 Runtime Errors . 13

3 Statically Typed Languages . 13
3.1 Java . 14
3.2 Java Generics . 14
3.3 De�ciencies . 15

4 The Dependent Lambda Calculus 16
4.1 � � . 16

4.1.1 Syntax . 16
4.1.2 Evaluation . 18
4.1.3 Type Checking . 18
4.1.4 Example Type Derivation in � � 20

4.2 Dependent Lists . 20
4.2.1 Type Rules for Lists 21

4.3 An example . 22

5 Implementation . 23
5.1 Implementation Decisions . 23

5.1.1 Abstract Syntax . 23
5.1.2 Bound and Free Variables 24
5.1.3 Term Equality . 24

5.2 Demo . 24
5.2.1 Identity example . 25
5.2.2 n copies Example . 25

2

5.2.3 Dependent Lists in Action 26

6 Conclusion . 27

7 Future Work

1 Introduction

Errors are the unavoidable hurdles of the computer programming ex-
perience. From forgetting a semi-colon on a �rst ’Hello World’ program,
to runtime segmentation faults caused by improper user input, computer
scientists will always face the task of debugging their programs, and will
never escape the suspicion that a user can make the whole program crash
with one illegal command. Computer scientists are faced with the task of
writing programs that perform expected computations, but what means do
we have to ensure that programs actually execute accordingly to these ex-
pectations? Many people disagree on the best methods for ensuring proper
program execution, whether they support unit testing, static analysis, or an-
other technique, and programming languages themselves are designed with
di�erent strategies for handling these issues.

Type systems provide a formal framework for automating a portion of
program analysis, de�ning typing rules for a type checking algorithm that
processes a program to detect type errors. These systems associate a formal
semantics with the abstract syntax of a programming language, specifying
how di�erent language constructs are allowed to interact with each other.
Because this approach analyzes an intermediate representation of the pro-
gram, usually in the form of an abstract syntax tree generated by parsing
the program text, type checking can be performed before program execu-
tion, and even before compilation. Some languages apply this type checking
algorithm and only compile programs that satisfy the type system without
producing a type error, catching many errors before execution that would
otherwise cause the program to terminate unexpectedly.

This thesis explores type systems in depth, with the goal of highlighting
the insu�ciencies of many widely used languages, and compares the costs
and bene�ts gained from more complex type systems. Various type theories
are presented and discussed, with the goal of providing enough theoreti-
cal background to make the formal theory of dependent lambda calculus
accessible.

1.1 Introduction to Type Systems

1.1.1 Statically Typed Languages

Programming languages are generally classi�ed into one of two cate-
gories, statically or dynamically typed. Languages that are statically typed,
such as Java, C/C++, and ML-like languages, apply a type checking oper-
ation during the compilation process, and only compile a program if type

4

checking does not detect any type errors in the code. Errors such as multi-
plying an integer by a string, or adding an integer to an array de�ned to be
an array of some user de�ned object, are caught by the type checker before
compilation, whereas other languages may not detect these errors until pro-
gram execution. This adds a level of safety to the programming language,
as the user gains con�dence that a program that passes the type checker
will execute as it is expected.

However, static type checking comes with some drawbacks as well. As
this process must be performed before compiling, compilation becomes more
expensive. This does allow for some runtime optimizations that yield more
e�cient code, but it is also costly to compile and more di�cult to write
well-typed programs than in dynamic languages that allow much more
ex-
ibility. The added restrictions in a statically typed language occasionally
rejects some programs that would execute properly occasionally fail to type
check. In the case of if -statements in a statically typed language such as
Java, the type system necessitates that the then and else clauses have the
same type, but a program such as

if (True)
return 1;

else
return "This case will never happen";

fails to type check even though the else clause is never reached in execution.
Many programmers begrudge these systems for this reason, but proponents
of static typing think the limitations are worth the reward.

1.1.2 Dynamically Typed Languages

Often referred to as ’untyped’ languages, some languages such as
Python do not type check until a program is actually executed. These
dynamic systems therefore do not catch type errors until runtime, as there
is no static analysis of the program. Because runtime errors are typically
fatal, something as easily caught as applying the ’+’ operator to anything
other than a number can go unnoticed until suddenly causing the whole
program to fail. But dynamically typed languages allow programmers much
more
exibility and power in writing code, as when used properly, complex
features such as polymorphism are trivially handled by the runtime system
of the language.

5

1.2 The Simply Typed Lambda Calculus

Beyond determining when a language should handle type checking,
when writing a programming language, we must also decide what forms
of typing we want to allow. In a static environment, types are checked at
compile time, but do programs require explicit type annotations? Should
functions be passable values? There exist di�erent theories on which to
base these language designs, and this decision carries signi�cant in
uence
over what a programming lanuage allows, or considers an error.

1.2.1 Syntax

The simply typed lambda calculus, � ! , is the theoretical basis for
typed, functional programming languages [3]. This is typically the �rst
formal system one learns about when studying type theory, and most typed
languages handle type checking similarly to � ! , so it makes sense for us
to �rst look at this calculus before considering more complex systems. � !

is the smallest statically typed, functional programming language we can
imagine. Terms in the language can only be one of four forms: variables,
constants, abstractions (anonymous functions), or applications. Types are
even more simple, and can only be either a base type � or a function between
types.

e := x Variable
j c Constant
j �x :�:e Lambda Abstraction
j e e Application

� := � Base Type
j � ! � Function Type

Figure 1: Abstract Syntax of � !

As an example, we can derive the expression

(�x :int:x) 7

by following the steps

e 7! e e7! (�x :�:e) e 7! (�x :int:e) e 7! (�x :int:x) e 7! (�x :int:x) 7

where x is a variable, int is a base type, and 7 is a constant in this calculus.

6

Assuming we are within a context � where int is a base type, and integers
are constants in the language with type int , we can derive the type of this
expression as follows:

�[x := int](x) = int
(Var)

�[x := int] ` x : int
(Lam)

� ` (�x :int:x) : int ! int
�(7) = int

(Const)
� ` 7 : int

(App)
� ` (�x :int:x) 7 : int

In order to derive the type of the resulting expression, we �rst check that
the applicant has a valid function type, via the (App) rule. We extend the
context � to contain the domain information, that is that x has type int ,
and check the type of the body of the lambda expression by looking up the
variable x in this new context. We con�rm that the type of the applicant
is int ! int , and then we proceed to look up the type of the operand, 7,
according to the (Const) rule. As 7 has the desired type int , the resulting
type of the application is type int .

1.3 System F

As was mentioned in the previous section, � ! restricts type expressions
� to only represent a speci�c type, meaning polymorphic code is unachiev-
able in a language based on that formal system. In order to write reusable
code that works properly over all types, we need to extend the de�nition of
the lambda calculus to allow abstraction over types.

System F provides such a solution, allowing lambda abstractions to range
over types, as well as over values [3]. For simplicity’s sake, we will only dis-
cuss relevant additional features to this system instead of going into the
same level of detail as with � ! .

While all valid � ! expressions and types are valid in System F, we also
extend the abstract syntax to allow types as terms, and terms of the form

��:e

and extend the syntax of types to allow types of the form

8�:�

This extension is the basis of the form of parametric polymorphism in Java
Generics and the type systems of ML-like languages such as Standard ML
(SML) and Ocaml. To highlight the strenght and
exibility of this formal
system, we can compare the polymorphic identity function in System F to

8

the identity function in � ! . If we have a language with int and String as
base types based o� of the type rules of � ! , we must write separate identity
functions �x :int:x and �x :String:x , with types int ! int and String ! String
respectively, to operate on expressions of the two di�erent base types. Al-
though these are perfectly valid in � ! , this creates redundant code that
could be signi�cantly condensed with a more powerful system, as the two
functions perform equivalent functions.

In System F, we write the polymorphic identity function as

��:�x :�:x

This allows us to abstract over the type of the input, and we supply the
desired type as the �rst parameter when we apply the function. That is,
if we desire the identity function on objects of type int , we simply apply
��:�x :�:x to int , and replace all � ’s in the body of the � with int , yielding
�x :int:x . Thus the single polymorphic lambda abstraction can capture the
identity function on any desired type, by simply providing the desired type
as a parameter. We must adapt the type rules to allow for application of
abstractions to types by the following:

� ` e : � (T-Lam)
� ` ��:e : 8�:�

� ` e : 8�:� 0 � ` � : Type
(T-App)

� ` e � : � 0[� := �]

Figure 3: Extended Type Rules for System F

where � 0[� := �] in the (T-App) rule means that we replace all occurrences
of � in � 0 with � , and the assertion � ` � : Type means that � is a valid type
in context �. Thus we can provide a type judgement for the polymorphic
identity function as follows:

�[x := �](x) = �
(Var)

�[x := �] ` x : �
(Lam)

� ` (�x :�:x) : � ! �
(T-Lam)

� ` (��:�x :�:x) : 8�:� ! �

and conclude that the polymorphic identity function in System F has type
8�:� ! � .

As we see in this example, System F allows programmers much more

exibility and power to write reusable, polymorphic code. This lies at the
basis of polymorphic data structures, map, and fold functions that make
code e�cient and take advantage of properties of functional languages to
their fullest.

9

1.4 Improvements

In languages implementing the type theories describe up to this point,
type checking can catch errors at runtime such as applying a function to an
input of the wrong type, or trying to append an element of the wrong type
to a typed list. Static type checking provides a huge bene�t to program-
mers by catching many mistakes before a program is ran, preventing runtime
crashes. But even in languages based o� of the polymorphic System F, there
are runtime errors we wish we could prevent through static analysis. While
it is arguable that the compile-time costs and restricted freedom on the side
of the programmer make type systems more of a hindrance than bene�cial,
we can extend these type systems further to catch even more errors before
runtime, increasing the value of static analysis.

Accompanying this thesis is an OCaml implementation of a dependently
typed, higher-order functional programming language, based o� of the de-
pendently typed lambda calculus, � �, developed from Per Martin L�of’s

tions are �rst-class citizens, meaning they can be passed as arguments, and
returned as output of other functions. Although some of these features may
appear similar to the formal systems discussed, we will see how Python
di�ers in handling program semantics and execution.

2.1.1 Code Example

As brie
y presented earlier, Python allows the then and else clauses
of if -statements to di�er in their types. While programmers contend that
statically typed languages may reject programs that would never fail to ex-
ecute, the lack of restrictions in a language like Python could be the root of
easily preventable, fatal errors at runtime.

To highlight the behavior of if -statements in a dynamically typed pro-
gram, let’s observe the following factorial function:

def factorial(n):
if n < 0:

return "Invalid Input"
elif n == 0:

return 1
else :

return n * factorial(n-1)

If factorial is called with a non-negative input, the function performs
the expected factorial computation we are familiar with from mathemat-
ics. However, Python allows us to handle negative inputs in any way we
want, whereas statically typed languages could only produce an exception
to be handled or a runtime error. Here, the function returns a value of type
String when called with a negative number. This does allow programmers
to return meaningful information while avoiding a fatal error, but to advo-
cates of type systems, no longer knowing how the program will execute is
too dangerous a risk to take.

Additionally, nothing necessitates calling factorial with an integer, so
we can just as easily call it with a
oating-point number. Again, we do not
know how the program will behave on an atypical input, as there is no stan-
dard mathematical de�nition of the factorial function on non-integers. In
a statically typed system, type annotations can require integer inputs, and
promise integer outputs, and otherwise catch these errors before execution
and fail to compile.

11

2.1.2 Polymorphism

As was just mentioned, Python would allow us to call factorial on
integers,
oating-point numbers, or an object of any other type, without
complaining until possibly producing a runtime error. For the factorial
example, this does not make the most sense, as the factorial function is
only de�ned in mathematics on integer values. But this does display the

exibility and freedom a programmer has working in a dynamically typed
environment. Though the factorial function may not take advantage of this
freedom, untyped languages make writing polymorphic code nearly e�ort-
less.

As our �rst example, Python allows us to write the identity function as
follows:

def identity(x):
return x

which is polymorphic over all types of inputs. As the function’s operation
does not depend on any type-speci�c features of the input, it should natu-
rally be polymorphic, but a language with explicit, static type declarations
would require us to write nearly identical identity functions to operate on
di�erent types of input.

def n copies(n, x):
return [x]*n

def length(l):
if l == []:

return 0
else :

return 1 + length(l[1:])

def reverse(l):
if length(l) == 0:

return []
return [l[-1]] + reverse(l[:-1])

Figure 4: Polymorphic Functions on Lists in Python

12

For a more interesting example, let us look at polymorphic operations
on lists in Figure 4. Some features of lists are independent of the literal
elements, or types of those elements, contained within a list. Creating a list
of ’n’ copies of an object, calculating the length of a list, or reversing the
order of a list, are all naturally expressed as polymorphic functions.

Although these functions are polymorphic in the sense that they will
properly execute on lists of any type of element, these are not type-safe
according to any formal polymorphic type system. While we can reverse a
list of integers, or a list of strings just as easily with this reverse function,
there is nothing stopping an unknowing programmer from calling the reverse
function on for example an integer or dictionary, rather than a list. The
dynamic typing of Python enables these polymorphic functions to be written
easily, but does nothing to ensure that they are used properly, as such a type
error wouldn’t be detected until runtime, crashing whatever program makes
the illegal function call.

2.2 Runtime Errors

We have been discussing the shortcomings of dynamically typed pro-
gramming languages for the past few sections, highlighting how errors pre-
ventable by static analysis become runtime errors that are often fatal to the
program’s execution. However, it is important to point out that some errors
are by their nature runtime errors in most common type systems. While
array or list indices, or invalid user input at runtime cannot be handled by
languages like Java either, the issue with dynamic languages is that all er-
rors become runtime errors. This puts additional pressure on programmers
to write proper code, without providing any assistance to understand what
the code actually does.

3 Statically Typed Languages

Now we switch our focus to statically typed languages with speci�c ex-
amples of Java programs. Programming takes on additional e�ort, however
minimal, as explicit type annotations are required to satisfy the type check-
ing algorithm, but we will see how Java’s type system ensures that we are
programming properly to the best of its ability.

13

3.1 Java

Java’s type system at a basic level works in the same way as the simply
typed lambda calculus. Programmers supply explicit type annotations to
variables during assignment, and if the type of the expression is of anything

This straightforward implementation of a List class is a syntactically
nicer version of System F, where Item takes the place of all � in the calculus.
When we instantiate a ListC of integers by declaring

List<Integer> list = new ListC<Integer>();

we replace all occurences of Item in the class with the type Integer . Now
the add function accepts an Integer as input instead of an Item , so if we
try to compile the line

list.add("This is a String, not an Integer...");

we will get a type error during compilation. Python would allow such ac-
tions, as lists are general and do not restrict the types of elements allowed
in a list, that is, a list could contain both an integer and a string in Python.
Here, by parameterizing ListC with the type Integer , we restrict the al-
lowed types of elements to only integers.

To portray the polymorphism of Generics, we could just as easily instan-
tiate a list strings by declaring

List<String> list 2 = new ListC<Integer>();

in which case we could add the string from before without producing a type
error at compile time.

Java Generics allow programmers to write polymorphic, reusable code
that ranges over all types of objects, and adds an additional level of type-
safety for such programs that languages like Python cannot capture. This
polymorphism is based o� of the formal System F, and adheres to its theo-
retical type rules.

3.3 De�ciencies

Even with a more robust type system (or the mere existence of a static
type system as compared to dynamically typed languages), languages such
as Java cannot capture all errors during compilation. Notably, Java has no
way of statically detecting illegal access of list or array indices until runtime.

Imagine having the two lists of Integer elements:

List<Integer> list 1 = new ListC<Integer>();
List<Integer> list 2 = new ListC<Integer>();

where the two lists are de�ned to be [1,2,3,4,5] and

15

4.1.2 Evaluation

While we did not discuss evaluation in simply-typed or polymorphic
contexts, type-checking in � � utilizes evaluation. We will see what this
means shortly, but here we present evaluation rules and discuss their mean-
ings.

? + ?
� + � � 0 + � 0

8x : �:� 0 + 8x : �:� 0 x + x

e + �x :�:e e[x := e0] + v
e e0 + v

� + �
�x :�:e + �x :�:e

Figure 7: Evaluation Rules for � � [1]

When we evaluate the ? term, it simply evaluates to the ? value.
When evaluating a dependent function space, we evaluate the domain � ,

and the codomain � 0 to evaluate the whole term.
Evaluating applications, we �rst evaluate the operator term to a lambda

abstraction value. We then replace all x in the body of the lambda abstrac-
tion with e0, and evaluate this substituted body to v

�3e?

thus typing involves evaluating the input, and type checking the type of the
codomain of the dependent function space in a context, extended with the
newly evaluated input.

(Star)
� ` ? : ?

� ` � : ? � + �
�[x := �] ` � 0 : ?

(Pi)
� ` (8x : �:� 0) : ?

�(x) = �
(Var)

� ` x : �
� ` � : ? � + � �[x := �] ` e : � 0

(Lam)
� ` (�x :�:e) : 8x : �:� 0

� ` e : 8x : �:� 0 � ` e0 : � � [x := e0] + � 00

(App)
� ` e e0 : � 00

Figure 8: Type Rules for � � [1]

The Star term type checks as the type ?

4.1.4 Example Type Derivation in � �

To introduce the usage of these type rules, we look at the type deriva-
tion of a simple lambda abstraction �x : ? :�y :x:y .

(1)

� ` ? : ? ? + ?

�[x := ?](x) = ?
�[x := ?] ` x : ? x + x

�[x := ?][y := x](y) = x
�[x := ?][y := x] ` y : x

�[x := ?] ` �y :x:y
� ` (�x : ? :�y :x:y) : (8x : ?:8y : x:x)

This is the polymorphic identity function in � �. Although it is quite similar
to System F, notice that the type parameter x is abstracted with the same
lower-case � as ther next parameter. This is because types are treated the
same way as other terms, whereas System F has separate rules for type ab-
straction and term abstraction. Verbally, this judgment states that for any
type x passed in as a parameter, this will return a function that takes an
input of type x, and returns an output of type x.

As a more complex example of these type rules in action, we look at the
type derivation of the following expression:

((�x : ? :�y :x:y) int) 4

Here we apply the identity function to the type parameter int with the value
4 as the second input. To derive the type of the application, we have:

1� ` (�x : ? :�y :x:y) int : (8x : int:int)

�(4) = int
� ` 4 : int

int
int [x := 4] + int

� ` ((�x : ? :�y :x:y) int) 4 : int

Type Derivation (1)

�(int) = ?
� ` int : ?

8y : int:int
8y : x:x [x := int] + 8x : int:int

1� ` (�x : ? :�y :x:y) int : (8x : int:int)

where we substitute the derivation for the polymorphic identity function in
place of ’Type Derivation (1)’. Thus the resulting type of the expression is
int .

4.2 Dependent Lists

Without more complex datatypes, it can be di�cult to see the bene�ts,
and even just the di�erences, of � � from System F. Polymorphism can be
achieved to the same e�ect as with the polymorphic lambda calculus, but

20

the intention is to gain additional capabilities through the more complex
type system. To take full advantage of � �, we introduce dependent list
types. We want them to be polymorphic, so that we can declare a list of
integers, a list of strings, or even a list of types, and to be able to statically
ensure that we do not violate the prescribed type of a list by trying to insert
an element of an improper type. Additionally, we include the length of a
list in its type, thus we the type � list (x), where � has kind ? and x is an
integer. In concrete instances, this allows us to construct objects of such
types as int list (3), or ? list (5) (read int list of length 3 and star list of
length 5, that is a list of types of length 5).

To allow for such constructs in the abstract syntax, we allow a term to
be of the forms:

stop[�] Nil of type �
more[e; �] e0 e00 Cons of length e, type � , element e0, and rest e00

� list (e) List of type

� ` � : ? � + �
(Nil)

� ` stop[�] : � list (0)

e + v
� ` e : int

� + �
� ` � : ? � ` e0 : � � ` e00: � list (v � 1)

(Cons)
� ` more[e; �] e0 e00: � list (v)

� ` � : ? � ` e : int
(List)

� ` � list (e) : ?

Figure 9: Type Rules for List Constructs in � �

To type check a Nil list, we �rst check that � has kind ?, and then evaluate
� to � to determine the type of the elements of the list.

Type checking a Cons cell is the most computationally expensive por-
tion of type checking in our language. As shown in the type rule above,
type checking involves evaluation of terms. We �rst ensure that the pro-
vided length term is of type int , and evaluate it to v

We can apply the same type rule to derive the type of the tail in expres-
sion (1), and then apply the Nil type rule to derive the type of the end of the
list. This displays that even for a simple, explicitly declared list of length
2, type checking is expensive, so why do we go through all of this e�ort?

abstraction obfuscates the underlying semantics of � � more than I wanted
to allow.

5.1.2 Bound and Free Variables

The tutorial implementation utilizes de Bruijn indices to maintain
bound variables and their scopes throughout the intermediate representation
of the language [1]. Again, though this may be the standard implementation
practice, I chose to instead implement direct substitution of variables bound
to symbols. To avoid name capture, I maintained a context containing in-
formation of types and values for both type checking and evaluation.

5.1.3 Term Equality

Because of the previous choices made in the tutorial paper, checking
equality of terms became non-trivial. While it would be easy to assert that
the int type is equal to the int type, but not equal to the bool type, the
higher-order abstract syntax makes certain cases more di�cult to compare.
Because functions are used to de�ne language constructs for dependent func-
tion spaces and lambda abstractions, we cannot simply ask if two OCaml
functions are equal to determine the equality of the term itself. We would
need to assert that the two OCaml functions produced the same output on
every given input, a task that sounds too complicated to even attempt to
address.

A technique called ’quotation’ was used to handle this issue, e�ectively
reverting higher-order abstract syntactic representations of values to �rst-
order terms that can be syntactically checked for equality [1]. Once again,
this did not uphold my expectations of clarity and simplicity in my own
implementation, and fortunately by avoiding a higher-order abstract syntax
altogether, I was able to implement a straightforward syntactic comparison
to determine equality.

5.2 Demo

To test my implementation of the language and con�rm it properly
adheres to the semantics of � �, I implemented a read-eval-print-loop inter-
preter to demo some code written in my language. It is important to realize
that this interpreter con
ates type checking and evaluation of terms into a
single process, and so appears to behave as a dynamically typed interac-
tive language. Although these errors seem to occur only during program

24

execution, type checking and evaluation are actually implemented as sepa-
rate processes, that in a compiler would be separated into pre-compile type
checking that produces a compiled executable of the program if type check-
ing is satis�ed, and evaluation of this already statically analyzed executable
program.

5.2.1 Identity example

To introduce the syntax of my implementation, we begin with a presen-
tation of the polymorphic identity function we have previously shown the
typing rules for in � �.

let id:pi x: � .pi y:x.x =
fn x: � .fn y:x.y;;

id int 8;;
id (pi x: � .pi y:x.x) id;;
id int id;;

(*Evaluates to 8*)
(*Evaluates to 'id' function*)

(*Fails to type check*)

Function declarations mimic the syntax of a lambda abstraction, and
a let

When we componentwise multiply two integer lists of length 1, the appli-
cation passes the type checking process, so compilation would continue and
we can expect the program to execute properly and return the list [25] . If
we try to componentwise multiply lists on elements that are of non-integer
type, then the type system catches a type error during compilation, just as
we would expect in a statically typed language such as Java. Finally, we see
the power of � � as a type system. When we try to componentwise multiply
two integer lists of di�erent lengths, type checking fails, as we require both
lists input to be of length 1.

6 Conclusion

These examples show how � � e�ectively handles the same typed situa-
tions as less expressive type theories. Simply-typed and polymorphic terms
remain well-typed in � �, and we have introduced more information to the
type system to capture more understanding during static analysis. Depen-
dent lists are a powerful extension of the dependently typed lambda calculus;
they maintain the
exibility of polymorphic lists and express more about the

certain errors during static analysis, but catch all that would be caught in
simple type systems, and additional errors that are beyond their scope.

7 Future Work

Hopefully the usefulness of dependent types is made clear from the
previous discussions, but there is more work to be done in creating highly
expressive type systems to ensure additional safety of program execution.
It seems that the more expressive the type system, the more errors we are
capable of catching during static analysis, so naturally we want to extend
� � further to reap its full bene�ts.

Though my current implementation introduces some extensions of � � to
incorporate assignments, conditionals, arithmetic, boolean logic, and depen-
dent lists, much is lacking compared to what most immediately think of as a
general programming language. Extending the core type system further to
allow dependent abstract data types, other dependent data structures, and
a core API strengthened by the theoretical foundation of � � would be the
next natural step in further developing this implementation.

Despite the expressive power of such a complex, but useful type theory,
requiring types to contain such additional information inevitably clutters the
syntax of a language. Not only do we have explicit type annotations, but
these type annotations depend on evaluation of terms. Of course, it would
be helpful to clean up the syntax of my implementation to improve ease of
use, but this would also further dispel the notion that dependently typed
languages are not suited for general programming. The highly expressive
type systems based o� of an encoding of predicate logic in language make
for extremely powerful logic-based proof systems, but it is often thought
that the complexity of dependent types is too high for common purposes.
Hopefully a straightforward implementation and more succinct syntax will
help discourage this belief.

Although � � has de�ciencies, the most notable of which is probably the
computational cost of type checking a dependent language, it is important
to recognize the usefulness we can gain from such additional security. While
static typing will never even be universally accepted due to the restrictions it
places on the programmer, we should still acknowledge the importance and
practicality of more rigid formal systems thanks to their increased assurance
of proper execution.

28

References

[1] Andres L�oh , Conor McBride , Wouter Swierstra, A Tutorial Imple-
mentation of a Dependently Typed Lambda Calculus, Fundamenta In-
formaticae, v.102 n.2, p.177-207, April 2010

[2] Norell, Ulf. Dependently typed programming in Agda. Advanced Func-
tional Programming. Springer Berlin Heidelberg, 2009. 230-266.

[3] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

29

Appendix

1 (�
� f i l e : as t . ml

3 � author : Sam Baxter
�

5 � This f i l e l a y s out the a b s t r a c t syntax o f the language .
� A s u b s t i t u t i o n func t i on i s implemented to handle

7 � s u b s t i t u t i o n o f types and va lues in type check ing and
� the eva lua t i on p rocess .

9 � A t o S t r i n g func t i on i s prov ided f o r the i n t e r a c t i v e d i s p l a y .
�)

11

type v a r i a b l e =
13 j S t r i ng o f s t r i n g

j Symbol o f s t r i n g � i n t
15 j Dummy

17 type term =
j Var o f v a r i a b l e

19 j S tar
j Pi o f a b s t r a c t i o n

21 j Lambda o f a b s t r a c t i o n
j App o f term � term

23 j I n t o f i n t
j Bool o f i n t

25 j Ann o f term � term
j I f o f term � term � term

27 j And o f term � term
j Or o f term � term

29 j Op o f term � term l i s t
j Let o f a b s t r a c t i o n

31 j IntType
j BoolTyn f
Q
9.401482.696 Td [(j)]TJ/F66 8.9664 Tf 10.151 0 Td [(5 0 10.959 l S
Q
0 g 0 G
q
18(t)]TJ
0 g 0 G
1 g 1 G
ET
q
1 0 0 1 122.809 301.327 cm
0 0 2.989 10.93 cm
[]0 d 0 J 0.398 w 0 0 m 0 10.959 l S
Q
0 g 0 G
q
1 0 0 1 w 0 0 9890.93 cm
[]0 d 0 J 0.398 w 0 0 m 0 10.959 l S
Q
0 g 0 358.655 10.959 re f
Q
0 t)]TJ
0 g 0 Gq
1 0 0 1 484.453 279.409 cm
0 0 2.989 10.959 re f
Q
0 g t

139

and t o S t r i n g L i s t = func t i on
141 j [] � > ""

j [on ly] � > t o S t r i n g only
143 j x : : xs � > (t o S t r i n g x) ^ " , " ^ (t o S t r i n g L i s t xs)

145 and toSt r ingVar = func t i on
j S t r i ng s � > s

147 j Symbol (s , i) � > s

149 and toSt r ingAbs (x , t , e) = " (" ^ (toSt r ingVar x) ^ " , " ^ (
t o S t r i n g t) ^ " , " ^ (t o S t r i n g e) ^ ") "

10 � i n t e r p r e t e r . ml The apply f u n c t i o n s can be used to a c t u a l l y
put a type checker f o r (or

� implementat ion o f) a p r i m i t i v e to use .
12 �

� To extend the b a s i s with new p r i m i t i v e s , the l i s t primNames
must be

14 � extended with an approp r ia te i d e n t i f i e r .
�)

16

open Environment ; ;
18

(�
20 � This i s the master l i s t o f names o f p r i m i t i v e ope ra to r s .

�
22 � NB: THESE NAMES ARE LAYED OUT IN A FIXED ORDER!

�)
24 l e t primOpNames = ["+" ; " � " ; " � " ; " / " ; "%" ; " �� " ; " < " ; " <=" ; "==

" ; " <> " ; " > " ; "

100 (fun (Ast . In t (v1) ,
Ast . In t (v2)) � > (� / �)

102 Ast . In t (v1 / v2)) ;

104 (fun (Ast . In t (v1) ,
Ast . In t (v2)) � > (� % �)

106 Ast . In t (v1 mod v2)) ;

108 (fun (Ast . In t (v1) ,
Ast . In t (v2)) � > (� �� �)

110 l e t v1 ' = f l o a t o f i n t v1 in
l e t v2 ' = f l o a t o f i n t v2 in

112 Ast . In t (i n t o f f l o a t (v1 ' �� v2 '))) ;

114 (fun (Ast . In t (v1) ,
Ast . In t (v2)) � > (� < �)

116 Ast . Bool (i f v1 < v2 then 1 e l s e 0)) ;

118 (fun (Ast . In t (v1) ,
Ast . In t (v2)) � > (� <= �)

120 Ast . Bool (i f v1 <= v2 then 1 e l s e 0)) ;

122 (f unc t i on
j (Ast . In t (v1) ,

124 Ast . In t (v2)) � > (� == �)
Ast . Bool (i f v1 = v2 then 1 e l s e 0)

126 j (a , b) � >
Ast .Op(Ast . Var (Ast . S t r i ng ("==")) , [a ; b])) ;

128

(f unc t i on
130 j (Ast . In t (v1) ,

Ast . In t (v2)) � > (� <> �)
132 Ast . Bool (i f v1 <> v2 then 1 e l s e 0)

j (a , b) � >
134 Ast .Op(Ast . Var (Ast . S t r i ng " <> ") , [a ; b])) ;

136 (f unc t i on
j (Ast . In t (v1) ,

138 Ast . In t (v2)) � > (� >= �)
Ast . Bool (i f v1 >= v2 then 1 e l s e 0)

140 j (a , b) � >
Ast .Op(Ast . Var (Ast . S t r i ng (" >=")) , [a ; b])) ;

142

(f unc t i on
144 j (Ast . In t (v1) ,

Ast . In t (v2)) � > (� > �)
146 Ast . Bool (i f v1 > v2 then 1 e l s e 0)

j (a , b) � >

36

148 Ast .Op(Ast . Var (Ast . S t r i ng (" > ")) , [a ; b])) ;

8 � fo rmal r u l e s o f the dependent type system . The equa l f unc t i on
� compares the e q u a l i t y o f terms / types .

10 �)

12 open Ast
open Environment

14

l e t rec normal ize env = func t i on
16 j Var x � >

(match
18 (t r y lookup va lue x ! env

with Not found � > r a i s e (F a i l u r e "unknow i d e n t i f i e r nn
"))

20 with
j None � > (Var x , env)

22 j Some e � > (f s t (normal ize env e) , env))
j S tar � >

24 (Star , env)
j Pi a � >

26 (Pi (no rma l i ze abs env a) , env)
j Lambda a � >

28 (Lambda (norma l i ze abs env a) , env)
j App(e1 , e2) � >

30 l e t e2 ' = f s t (normal ize env e2) in
(match f s t (normal ize env e1) with

32 j Lambda (x , , e1 ') � >
(f s t (normal ize env (subs t [(x , e2 ')] e1 ')) , env)

34 j e1 � >
(App(e1 , e2)) , env)

36 j
�

56 (match ra to r ' , rands with
j BinaryOp f , [a ; b] � >

58 (f (f s t (normal ize env a) , f s t (normal ize env b)) ,
env)

j UnaryOp f , [a] � >
60 (f (f s t (normal ize env a))) , env)

j Prod x � >
62 (Prod (L i s t . map f s t (L i s t . map (normal ize env) x)) , env)

j Let (x , t , e) � >
64 l e t t ' = f s t (normal ize env t) in

l e t e ' = f s t (normal ize env e) in
66 extend x t ' ~ va lue : e ' env ;

(Let (x , t ' , e ') , env)
68 j IntType � >

(IntType , env)
70 j BoolType � >

(BoolType , env)
72 j BinaryOp f as x � > (x , env)

j UnaryOp f as x � > (x , env)
74 j L i s t (typ , l en) � >

(L i s t (f s t (normal ize env typ) , f s t (normal ize env len)) ,
env)

76 j N i l e � > (N i l (f s t (normal ize env e)) , env)
j Cons (len , typ , e l , r e s t) � >

78 (Cons (f s t (normal ize env len) , f s t (normal ize env typ) ,
f s t (normal ize env e l) , f s t (normal ize env r e s t)) , env)

j I s N i l e � >
80 (match f s t (normal ize env e) with

j N i l a as t � > (Bool (1) , env)
82 j Cons (, , ,) � > (Bool (0) , env)

j � > r a i s e (F a i l u r e " Input cannot normal ize nn"))
84 j Head e � >

(match f s t (normal ize env e) with
86 j Cons (, , e ,) � > (e , env)

j � > r a i s e (F a i l u r e "Cannot normal ize head o f anyth ing
o ther than non � empty l i s t nn"))

88 j Ta i l e � >
(match f s t (normal ize env e) with

90 j Cons (, , , e) � > (e , env)
j N i l e � > (N i l e , env)

92 j � > r a i s e (F a i l u r e "Cannot normal ize t a i l o f anyth ing
o ther than a l i s t nn"))

j � > r a i s e (F a i l u r e " Input cannot normal ize nn")
94

and norma l i ze abs env (x , t , e) =
96 l e t t ' = f s t (normal ize env t) in

(x , t ' , e)
98

l e t rec a l l t r u e l = (match l with

39

100 j [] � > t rue
j [x] � > x

102 j x : : xs � > x && a l l t r u e xs)

104 l e t rec a p p l y l i s t f s l s =
(match fs , l s with

106 j [] , [] � > []
j [f] , [x] � > [f x]

108 j x : : xs , y : : ys � > (x y) : : (a p p l y l i s t xs ys))

110 l e t equa l env e1 e2 =
l e t rec equal ' e1 e2 = (match e1 , e2 with

112 j Var x1 , Var x2 � > x1 = x2
j App(d1 , d2) , App(f1 , f 2) � > equal ' d1 f1 && equal ' d2 f2

114 j Star , Star � > t rue
j Pi a1 , Pi a2 � > equa l abs a1 a2

116 j Lambda a1 , Lambda a2 � > equa l abs a1 a2
j In t i , I n t j � > i = j

118 j Bool b , Bool b ' � > b = b '
j Ann(d1 , d2) , Ann(f1 , f 2) � >

120 equal ' d1 f1 && equal ' d2 f2
j Op(r , rands) , Op(r ' , rands ') � >

122 equal ' r r ' && a l l t r u e (a p p l y l i s t (L i s t . map equal '
rands) rands ')
j Let a1 , Let a2 � >

124 equa l abs a1 a2
j IntType , IntType � > t rue

126 j BoolType , BoolType � > t rue
j Prod a , Prod b � >

128 (match a , b with
j [] , [] � > t rue

130 j [x] , [y] � > equal ' x y
j x : : xs , y : : ys � > equal ' (Prod xs) (Prod ys))

132 j L i s t (a , b) , L i s t (x , y) � >
equal ' a x && equal ' b y

134 j N i l a , N i l b � >
equal ' a b

136 j Cons (a1 , b1 , c1 , d1) , Cons (a2 , b2 , c2 , d2) � >
equal ' a1 a2 && equal ' b1 b2 && equal ' c1 c2 && equal '

d1 d2
138 j I s N i l a , I s N i l b � >

equal ' a b
140 j Head a , Head b � >

equal ' a b
142 j Ta i l a , Ta i l b � >

equal ' a b
144 j

equal ' t t ' && (equal ' (subs t [(x , z)] e1) (subs t [(x ' , z)]
e2))

148 i n
equal ' (f s t (normal ize env e1)) (f s t (normal ize env e2))

150

l e t rec i n f e r env = func t i on
152 j Var x � >

(t r y lookup typ x ! env
154 with Not found � > r a i s e (F a i l u r e "unknown i d e n t i f i e r nn"))

j S tar � > Star
156 j Pi (x , t , e) � >

l e t t ' = i n f e r env t in
158 l e t temp = ! env in

extend x t env ;
160 l e t e ' = i n f e r env e in

env := temp ;
162 (match t ' , e ' with

Star , Star � > Star
164 j , � > r a i s e (F a i l u r e " i n v a l i d type in dependent

f unc t i on spacenn"))
j Lambda (x , t , e) � >

166 l e t t ' = i n f e r env t in
l e t temp = ! env in

168 extend x t env ;
l e t e ' =

170 (t r y i n f e r env e
with F a i l u r e s � >

172 env := temp ;
r a i s e (F a i l u r e (" Input

(match (i n f e r env e2) , (i n f e r env e3) with
194 j L i s t (t , a) , L i s t (t ' , b) � >

check equa l env t t ' ;
196 L i s t (t ' , b)

j L i s t (, In t i) , L i s t (, In t j) � > r a i s e (F a i l u r e " I f
s tatement on l i s t s does not type � checknn")

198 j , � > r a i s e (F a i l u r e (" I f s ta tement does not type �
checknn" ^ (t o S t r i n g (i n f e r env e2)) ^ " <> " ^ (t o S t r i n g (
i n f e r env e3))))))

j And(e1 , e2) � >
200 l e t e1 ' = i n f e r env e1 in

l e t e2 ' = i n f e r env e2 in
202 check equa l env e1 ' e2 ' ;

check equa l env e1 ' BoolType ;
204 BoolType

j Or (e1 , e2) � >
206 l e t [e1 ' ; e2 '] = L i s t . map (i n f e r env) [e1 ; e2] in

check equa l env e1 ' e2 ' ;
208 check equa l env e1 ' BoolType ;

BoolType
210 j Op(ra to r , rands) � >

l e t (x , Prod (s) , t) = i n f e r p i env r a t o r in
212 l e t e = L i s t . map (i n f e r env) rands in

a p p l y l i s t (L i s t . map (check equa l env) s) e ;
214 subs t [(x , Prod (rands))] t

j Prod x � > Prod (L i s t . map (i n f e r env) x)
216 j Let (x , typ , e) � >

l e t temp = ! env in
218 extend x typ env ;

l e t t = i n f e r env e in
220 (t r y check equa l env t typ

with F a i l u r e s � >
222 env := temp ;

r a i s e (F a i l u r e ("Let b ind ing does not type � checknn" ^ (
s)))) ;

224 env := temp ;
t

226 j IntType � >
Star

228 j BoolType � >
Star

230 j L i s t (typ , l en) � >
(match i n f e r env typ , i n f e r env len with

232 j Star , IntType � > Star
j � > r a i s e (F a i l u r e " Input does not type � check as l i s t

nn"))
234 j N i l e � >

l e t t = f s t (normal ize env e) in
236 check equa l env (i n f e r env t) Star ;

42

L i s t (t , I n t 0)
238 j Cons (len , typ , e l , r e s t) � >

l e t len ' = f s t (normal ize env len) in
240 l e t typ ' = f s t (normal ize env typ) in

check equa l env (i n f e r env typ ') Star ;
242 check equa l env (i n f e r env len ') IntType ;

l e t e l ' = i n f e r env e l in
244 check equa l env typ ' e l ' ;

(match len ' , i n f e r env r e s t with
246 j I n t i , L i s t (t , I n t j) � >

check equa l env t typ ' ;
248 (t r y a s s e r t (i = j +1)

with A s s e r t f a i l u r e s � > r a i s e (F a i l u r e " L i s t
l eng t hs do not type � checknn")) ;

250 L i s t (typ ' , len ')
j , L i s t (t ,) � >

252 L i s t (typ ' , len ')
j � > r a i s e (F a i l u r e "Cons does not type � checknn"))

254 j I s N i l e � >
(match i n f e r env e with

256 j L i s t (, In t i) � > BoolType
j � > r a i s e (F a i l u r e " Input does not type � checknn"))

258 j Head e � >
(match i n f e r env e with

260 j L i s t (t ,) � >
t

262 j � > r a i s e (F a i l u r e "Head does not type � checknn"))
j Ta i l e � >

264 (match i n f e r env e with
j L i s t (t , I n t i) as t ' � >

266 i f i = 0 then t '
e l s e L i s t (t , I n t (i � 1))

268 j L i s t (t , a) � >
L i s t (t , Op(Var (S t r i ng (" � ")) , [a ; In t 1]))

270 j � > r a i s e (F a i l u r e " Ta i l does not type � checknn"))
j � >

272 r a i s e (F a i l u r e " General input does not type � checknn")

274

276

and i n f e r p i env e =
278 l e t t = i n f e r env e in

(match f s t (normal ize env t) with
280 j Pi a � > a

j � > r a i s e (F a i l u r e " dependent f unc t i on space expectednn")
)

282

and check equa l env x y =

43

284 i f not (equa l env x y) then r a i s e (F a i l u r e (" Express ions are
not e q u i v a l e n t nn" ^ (Ast . t o S t r i n g x) ^ " <> " ^ (Ast . t o S t r i n g

y)))

Listing 4: ./../../Final/staticsemantics.ml

(� f i l e : l e x e r . ml l �)
2 (� L e x i c a l ana l yze r re tu rns one o f the tokens :

the token NUM of i n tege r ,
4 ope ra to r s (PLUS, MINUS, MULTIPLY, DIVIDE , CARET) ,

or EOF. I t s k i p s a l l b lanks and tabs , unknown c h a r a c t e r s . �)
6 f

open Parser (� Assumes the pa rse r f i l e i s " pa rse r . mly " . �)
8 g

l e t d i g i t = [' 0 ' � ' 9 ']
10 l e t word = [' a ' � ' z ' 'A' � 'Z ']

r u l e token = parse
12 j [' ' ' n t ' ' nn '] f token lexbu f g

j ' , ' f COMMA g
14 j d i g i t+

j " . " d i g i t+
16 j d i g i t+ " . " d i g i t � as num

f NUM (i n t o f s t r i n g num) g
18 j '+ ' f PLUS g

j ' � ' f MINUS g
20 j ' � ' f MULTIPLY g

j ' / ' f DIVIDE g
22 j '% ' f MOD g

j ' : ' f COLON g
24 j ' ; ' f SEMI g

j "� > " f ARROW g
26 j " fn " f FUN g

j " p i " f PI g
28 j "~" f STAR g

j ' . ' f DOT g
30 j " i n t

44 j " !=" f NEALT g
j ">=" f GE g

46 j "> " f GT g
j " t rue " f TRUE g

48 j " f a l s e " f FALSE g
j " l e t " f LET g

50 j " i n " f IN g
j " i f " f IF g

52 j " e l s e " f ELSE g
j " then " f THEN g

54 j "and" f AND g
j " or " f OR g

56 j " not " f NOT g
j word+ as s t r i n g f ID s t r i n g g

58 j ' (' f LPA'

27

j exp LT exp f l e t id = to Id (" < ") in Ast .Op(id , [$1 ; $3
]) g

69 j exp LE exp f l e t id = to Id (" <=") in Ast .Op(id , [$1 ; $3
]) g

j exp CMPEQ exp f l e t id = to Id ("==") in Ast .Op(id , [$1 ; $3
]) g

71 j exp NE exp f l e t id = to Id (" <> ") in Ast .Op(id , [$1 ; $3
]) g

j exp NEALT exp f l e t id = to Id (" <> ") in Ast .Op(id , [$1 ; $3
]) g

73 j exp GT exp f l e t id = to Id (" > ") in Ast .Op(id , [$1 ; $3
]) g

j exp GE exp f l e t id = to Id (" >=") in Ast .Op(id , [$1 ; $3
]) g

75 j NOT exp f l e t id = to Id (" not ") in Ast .Op(id , [$2])
g

j MINUS exp f l e t id = to Id (" � ") in Ast .Op(id , [Ast . In t
(0) ; $2]) g

77 j LPAREN exp RPAREN f $2 g
j IF exp THEN exp ELSE exp f Ast . I f ($2 , $4 , $6) g

79 j exp AND exp f Ast . And($1 , $3) g
j exp OR exp f Ast . Or ($1 , $3) g

81 j LET ID COLON tyterm EQ exp f Ast . Let (Ast . S t r i ng ($2) , $4
, $6) g

;
83

l i s t :
85 NIL LBRACKET tyterm RBRACKET f Ast . N i l ($3) g

j CONS LBRACKET term COMMA tyterm RBRACKET exp term f Ast . Cons (
$3 , $5 , $7 , $8) g

87

tyterm :
89 INTTYPE f Ast . IntType g

j BOOLTYPE f Ast . BoolType g
91 j PI ID COLON tyterm DOT tyterm f Ast . Pi (Ast . S t r i ng ($2) , $4 , $6

) g

)
52)

)
54 with

Pars ing . P a r s e e r r o r � >
56 (

o u t p u t s t r i n g s tdout " Input s t r i n g does not parse
. . . n n" ;

