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Abstract 

The purpose of this project is to integrate a three-dimensional model of a real-

world environment into a distributed system based on multicast communication between 

nodes in the system.  The development of three-dimensional environments (3DEs) 

revolutionized the computer graphics industry, in particular the gaming industry, by 

bringing computer graphics one step closer to replicating reality.  The developed 

application uses a 3DE of a dormitory (specifically Ignacio Hall on the Boston College 

campus) to serve as a backdrop for a distributed system in which users compete against 

each other for resources and objectives (such as health powerups and to obtain a winning 

score).  The development of a distributed mutual exclusion algorithm operating via 

multicast communication was necessary to ensure the proper performance of the 

developed distributed system.  The created algorithm takes advantage of the 

characteristics of a multicast network and various synchronization mechanisms, such as a 

timestamp and the election of a central arbitrator from the multicast group.  These 

synchronization safeguards not only enforce mutual exclusion, but also aid in the 

enforcement of reliable communication between nodes in the distributed system.  The 

implementation of a dynamic rotating server selected from among the members of the 

multicast group, in combination with a timestamp applied to all messages sent between 

nodes in the system, forces the ordering of messages sent within the system.  This adds a 

level of predictability and stability to developed system and its communication 

mechanism.  The final implementation and integration of the 3DE, the distributed mutual 

exclusion algorithm and the reliable system based on the multicast communication 
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section to be safe.  Mutual exclusion in a distributed system is therefore required to not 

only ensure that the work is evenly distributed between processes, but that resources 

available to the system are also shared evenly and fairly.   

Algorithms that provide mutual exclusion to a distributed system are evaluated 

primarily on the bandwidth utilized to communicate with the other computers in the 

system, the effect the algorithm has on the throughput of the system, and the effect of 

synchronizing the computers in the system.  The current body of work in this field is 

primarily focused on enforcing mutual exclusion in a distributed system based on using a 

point-to-point protocol for means of inter-node communication.  Algorithms that meet 

this condition include message-passing algorithms, election algorithms and token-based 

algorithms.  The goal for all of these algorithms is ultimately the same:  the reduction of 

the number of messages that is required to be exchanged between processes in order to 

enforce mutual exclusion.  By reducing the number of messages needed to ensure mutual 

exclusion, these algorithms attempt to improve the optimality of the overall system in 

terms of bandwidth and throughput.     

The idea behind the algorithm presented in this paper is to create a distributed 

mutual exclusion algorithm that provides mutual exclusion using multicast 

communication between the members of a distributed system.  In order to realize this 

goal, the developed algorithm draws from the various techniques developed to enforce 

mutual exclusion in a distributed system, such as message passing, the election of a 

central arbitrator and synchronization [1,2,6].  The proposed algorithm relies on multicast 
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(and not a point-to-point protocol), the number of messages that need to be exchanged to 

secure entry into the critical section is greatly reduced.  This is very different from 

previously proposed algorithms, which rely on nodes either knowing about all other 

nodes in the network or at least knowing about neighboring nodes in the network.  This 

choice of a broadcast protocol allows the proposed algorithm to guarantee distributed 
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   For any events a,b:  if a ?  b, then C(a) < C(b)  [1]. 

This condition states that if in the ordering of events in the system, event a occurred 

before event b, then it can be deduced that the value of the logical clock at the time event 

a occurred is less than the value of the clock at the time at which event b
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mutual exclusion, the algorithm has a large overhead in terms of the messages needed to 

achieve mutual exclusion.   

Using Ricart and Agrawala as a basis for a distributed mutual exclusion 

algorithm, other algorithms have sought to improve on the cost of communication 

between nodes by using different types of messages or methods of communication 

[3,4,5].  Suzuki and Kasami proposed two different distributed mutual exclusion 

algorithms – one based on message passing and another based on token passing.  In their 

message-passing algorithm, “grant messages” are used to reduce the number of messages 

needed to attain mutual exclusion.  Nodes only send a “grant message” to a node that has 

requested entrance to the critical section and not to every other node in the system like in 

Ricart and Agrawala’s algorithm [3].  This sacrifices the size of the message in order to 

avoid communicating with all other nodes in the system. 

The token passing technique (also developed by Suzuki and Kasami) seeks to 

reduce the number of messages required to ensure mutual exclusion by changing the 

method by which processes communicate.  By passing a “privilege” token to the next 

node in line to use the critical section, this algorithm presents a distributed mutual 

exclusion solution that requires at most N messages (where N is the number of nodes in 

the system) [5].  However, this algorithm is prone to greedy processes (because of its 

first-come, first serve nature) and “token chasing” (a condition in which a node is 

constantly following the token from one node to another, but never obtains it).   

Like Suzuki and Kasami, Maekawa used the algorithm developed by Ricart and 

Agrawala to create an algorithm that sends C vN messages to ensure mutual exclusion, 

where C is a constant between 3 and 5 [4].  This algorithm utilizes a non-weighted voting 
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(or election) scheme, which uses the intersection of subsets of nodes to find a common 

node between two competing nodes to act as an arbitrator that grants access to the critical 

section.  This is similar to the election algorithm developed by Garcia-Molina, in which 

nodes decide on a leader to serve as a central arbitrator [6].  Maekawa’s algorithm 

addresses node failure by changing an active node logically into the failed node.  By 
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3.  The Proposed Algorithm 

 The nature of a distributed system built on multicast communication plays a large 

role in the development of any distributed mutual exclusion algorithm.  Not only must 

such an algorithm assure mutual exclusion, but it must also be mindful of the caveats of 

multicast communication between members of a network of computers.  Members of a 

multicast group may request resources at any given time, as well as exit and enter the 

group.  Furthermore, because the communication protocol used in the development of the 

distributed application is the multicast communication protocol (and nodes therefore do 

not know directly about one another), greater safeguards must be put into place to prevent 

starvation and deadlock in regards to mutual exclusion.  This places more of a burden on 

the node acting as the arbitrator in the system.  Not only must the node acting as the 

server handle requests at any time, it is also responsib le for maintaining the integrity and 

synchronization of the group.  The proposed algorithm for distributed mutual exclusion 

using multicast communication makes use of timestamps for synchronization and logical 

identification numbers to reference nodes in the multicast group.  The idea behind this is 
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to determine if it is its turn to be the server by examining the timestamp value contained 

in the message (this is explained in detail in section 3.3).  Server status rotates from one 

node to the next, giving all nodes in the system a turn to act as the server and handle an 

equally distributed amount of work.  Any node wishing to request a resource or enter the 

group does so by issuing its request to the entire multicast group.  The server (who is just 

another node in the group) listens for such requests and processes and responds to them 

appropriately.  Once the server node has made a decision regarding the resource request, 

it broadcasts its response to the entire group.  The requesting node, upon receipt of this 

response, enters the critical section if it has been determined by the server that it is safe to 

do so.  All nodes (other than the node that has been granted access to the resource) simply 

mark the resource as in use and wait for the node with access to the critical section to 

broadcast a release command before attempting to request the resource again.  The 

algorithm is described in detail below: 

1. Node A, wishing to enter the critical section, sends a request to the multicast 

group requesting the use of resource R. 

2. Node B, who is currently acting as the server for the group, receives the 

request for resource R from Node A.  Node B determines that resource R is 

available and locks resource R for Node A.  At the same time Node C issues a 

request for resource R as well.  Before dealing with the next incoming 

message (which is Node C’s request for resource R), Node B sends its 

response to the group regarding the status of resource R. 

3. Node A receives the response to the group and notices that the server has 

granted Node A access to resource R.  Node A enters the critical section and 
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begins to use resource R.  At the same time, Node C also receives the 

response and sees that resource R is in use by Node A.  It marks resource R as 

in use. 

4. Upon finishing its work in the critical section, Node A issues a release 

message to the entire group, indicating that it is done using the critical section.  

All nodes, including Node C, mark resource R as being available again.  Node 

C is now free to issue a request for resource R. 

5. Steps 1-4 are repeated as nodes wish to access the critical section of the 

system. 

 

3.1  The Role of the Server 

 A node that has taken on the role of the server in the system has the duty to fulfill 

requests for resources in the system.  The server’s purpose is to provide an extra layer of 

synchronization in order to assure that all nodes have the same view of the state of the 

entire system at any give time.  The server achieves this synchronization by being the 

only node with the authority to grant access to a critical section.  The time at which a 
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This is done to ensure that deadlock will not occur by assigning every possible timestamp 

value to at least one of the remaining nodes in the system. 

The proposed algorithm also requires the server to maintain the integrity of the 

group in order to prevent non-responding nodes from becoming the server and plunging 

the group into an unstable state.  When a node starts its turn as the server (by noticing 

that the timestamp of the message it just received is equal to its starting time to be the 

server), the node runs the following code (replicated here in psuedocode): 

 If(I_AM_SERVER && timestamp == start_time) 
 { 
  pingAllMembers( ); 
  setMyActivity( ACTIVE ); 
 } 

 Figure A: Server module to request membership verification from all other nodes.  

The server broadcasts a message to the entire group and waits for a response from each 

member it believes to still be in the group.  It also sets itself to “active” because it is still 

a member of the group.  The server waits to receive replies to the ping until the 

timestamp is equal to one less than the node’s stopping time, as demonstrated by the 

following code: 

  If(I_AM_SERVER && timestamp == (stop_time – 1)) 
  { 
   determineNextServer( ); 
  } 

  Figure B: Server module to determine which node will be the next server for the system. 

At this point, the server is almost done with its turn as being the central arbitrator and 

therefore must decide if the next server is still capable of taking on the role of server.  

The current server determines which nodes it has received a response from and 

increments the timestamp by a certain value in order to skip over an “inactive” node.  

This safeguard ensures that nodes that appear to still be in the group, but have somehow 
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   } 
 } 
 else if(received_msg == system_state) 
 { 
  if(received_msg.key() == request) 
  { 
   if(resource_available) 
   { 
    lockForRequestingNode( resource ); 
    incrementTimestamp( ); 
    send( RESPONSE );/* to entire group */ 
   } 
  } 
  else if(received_msg.key() == release) 
  { 
    unlockResource ( resource ); 
  } 
  else if(received_msg.key() == ping) 
    memberActivity[sender.id] = ACTIVE; 
  else { 
    /* system state update – i.e.  
       any type of personal information 
       about a node that it needs to  
       notify other members about  

*/ 
   } 
 } 

   Figure C: Server module to process incoming messages. 

As we can see from the code above, the server has to deal with two different types 

of requests:  a request to join the group and a request for a resource available to the 

group.  In order to maintain the integrity of the group, the server is the only node allowed 

to welcome nodes into the group (since it is a multicast group, nodes do not know who 

the members of the group are without some imposed system to keep track of the 

members).  This prevents one node from allowing a node to join the group while another 

node denies the same node’s request to enter the group (basically, it provides another 

layer of synchronization and strengthens the mutual exclusion on system resources).  By 

centralizing this authority, the algorithm allows the system to remain dynamic in terms of 

membership without compromising the system’s structure or resources. 
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Like the module to grant membership to new nodes (provided there is room in the 

system for new members), the module to deal with resource requests is also centralized in 

the server node.  The server must decide, upon receiving a resource request, whether or 

not the request can be granted.  Regardless of its decision, the server broadcasts its 

response to the entire group (by using the underlying method of multicast 

communication).  This saves the server the message traffic associated with most point-to-

point distributed mutual exclusion protocols, which require central arbitrators to send 

messages to each node in the group individually (as discussed earlier, other algorithms try 

to reduce the number of messages needed by is suing “grant messages” to only the 

requesting node [3]).  In the proposed algorithm, the server needs to only broadcast to the 

group the logical identity of the node (using the logical identification numbers given to 

members as they join the group) that ha
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removeLeavingMember( ); 
    calculateMyTurnAsServer( ); 
    if(no_longer_my_turn) 
     I_AM_SERVER = false; 

    } 
  } 
  else if(received_msg == system_state) 
  { 
   if(received_msg.key() == response) 
   { 
    processRequestResponse( ); 
   } 

  else if(received_msg.key() == release) 
  { 
   unlockResource ( resource ); 

   } 
   else if(received_msg.key() == ping) 
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non-server nodes receive this message as well and add the new node to their list of the 

current members of the group.  Each node must then send out their information to the 

new node (since the new player’s identification number is now known, this information 

can be addressed directly to the new node).  The new node does not become a member of 

the group until it has received a response from every member currently in the group.  

This ensures that every node has the same picture of the composition of the membership 

of the group.  This module also distributes the work for admitting new members to the 

group by making every node take part in welcoming in a new node regardless of whether 

their status is that of a server node or non-server node. 
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other nodes in the group which node has secured the resource.  This is done to maintain 

an accurate and synchronized picture of the state of the system.  As mentioned earlier, 

there is no queuing involved, as the algorithm is a first-come, first-serve algorithm.  

When a node is done with the resource, it broadcasts a “release” command to the group.  

All nodes process this release command, freeing the resource for any other node to now 

request that resource.  The distributed nature of the entire proposed algorithm in this 

paper ensures that the server node will address all requests for shared resources. 

 

3.3  The Timestamp and Synchronization 

 The importance of the synchronization of events in a distributed system cannot be 

over emphasized.  As pointed out by Lamport, a distributed system can be determined to 

be working properly if one can establish the ordering of events in the system [1].  The 

distributed mutual exclusion algorithms described earlier in this paper all use some form 

of synchronization to ensure that events are processed in the correct order of occurrence.  

However, these algorithms deal with fixed networks of computers using point-to-point 

communication.  The use of multicast communication adds an extra level of complexity 

to the notion of synchronizing events in a distributed system.  Here, nodes do not 

communicate directly with one another and cannot be sure that their message has reached 

every other member in the group (this is the nature of multicast communication and must 

be assumed for the purposes of creating synchronization).  This means that all nodes in 

the group cannot be allowed to control a logical clock apparatus (because there is no way 

for nodes to communicate directly to determine the value of the clock).  Instead, there 

must be a central source that regulates the clock in order to force synchronization upon 
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all of the nodes in the system.  Naturally, the server node was chosen to be in charge of 

synchronizing the logical clock created for the system (specifically, the algorithm uses a 

simple timestamp that acts like a real clock – when it equals a prescribed limit, the clock 

is reset to zero).  By designating the server as the only node with authority to change the 

value of the clock, the algorithm ensures that all clocks in the system will be 

synchronized and that the workload of the system stays distributed equally. 

 The management of the synchronization mechanism is crucial to the performance 

of the proposed algorithm.  The current server node increments the timestamp when it 

receives a message that pertains to a resource or membership request.  The following 

diagram displays this process: 

 
  Figure E: State diagram showing when the server node increments the timestamp value.  

A
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communication.  By subjugating all other nodes under the authority of the server node, 

the system is assured that the synchronization mechanism will remain stable.   

While the inclusion of a timestamp is necessary to ensure that ordering of events 

in the system is possible, an issue does arise regarding the rotating server status.  The 

server designation (as discussed earlier) is based on a dynamic calculation, which takes 

into consideration the number of members currently in the group, the current value of the 

timestamp, a node’s relative position in the group based on its logical identification 

number and a constant which represents the number of turns each node will serve as the 

server.  For instance, if there are four members in the group, where each member serves 

five turns as the server, node zero would be the server when the timestamp value falls 

between zero (node ID * turn value) and four ((node ID * turn value) – 1).  Therefore, 

because a node’s status as server is not fixed and changes dynamically based on its 

relative position in the group (numerical ordering based on identification number), the 

server node must be consciously aware of the current timestamp and when its turn comes 

to an end.  A potential problem can arise when the server is on its last turn and receives a 

request which increments the timestamp.  For instance, if node two is currently the server 

on its last turn as server and receives a resource request from node three (who is to be the 

next server), node two would receive the message, increment the timestamp, and send out 

the response.  Node three, upon receipt of the message, would check the timestamp of the 

incoming message and update its local timestamp value (as the incoming timestamp value 

is higher than its current value).  As a result of this action, node three now becomes the 

server, which does not know how to handle a resource response (because a server does 

not need to request resources externally).  In order to deal with this potential 
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synchronization problem, a “SYNC” message was introduced to the algorithm to force 

synchronization on a server’s last turn.  The following diagram represents this addition to 

Figure E: 

 

   Figure F: State diagram showing the addition of the SYNC message to server module   

This gives the server the power to respond to the current resource request and then 

increment the timestamp value (as is part of the algorithm when a resource request is 

received) without having to worry about creating the situation described in detail above.  

If the server is currently on its last turn, it sends its response, then updates the timestamp 

value (effectively ending its turn as server), and sends out the “SYNC” message with the 

new timestamp value.  All nodes accept the timestamp value contained in a “SYNC” 

message, regardless of its value.  This is because the value is guaranteed to be correct, as 

the only node that can issue such a message is the acting server.  This necessary 

safeguard is the result of the server apparatus and its implementation.  By developing a 

system based on the dynamic designation of a node to act as the server (a modification on 
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election-based mutual exclusion algorithms), the addition of a special type of message to 

ensure synchronization and to prevent a node from taking on the role of the server 

prematurely is essential.  This added safety feature protects the synchronization of the 

system’s logical clock and as a result, protects the distributed nature of the algorithm. 

 

4. Assertions 

4.1 Mutual Exclusion 

 In order for a distributed system to achieve mutual exclusion, no two nodes 

should have access to the same shared resource at the same time.  This means that a node 

must exit the critical section before any other node can gain access to the same critical 

section. 

 Assertion: The proposed algorithm achieves mutual exclusion. 

 Proof: In order to prove that the proposed algorithm achieves mutual exclusion, 

we must assume the contrary condition:  two nodes can both have access to the same 

shared resource at the same time.  In order for two nodes to have access to the same 

critical section at the same time, one of two cases must be possible: 

1. Node A must have already been in the critical section at the time in which 

Node B entered the same critical section. 

2. Node A and B simultaneously entered the critical section. 

In the first case, node B is granted access to the critical section that is already 

occupied by node A.  This means that the server node has made two grant responses for 

the same critical section without receiving a release from node A.  This is impossible 

with the proposed algorithm.  Upon receiving a request for the critical section from node 
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A, the server node would see that the critical section is still available.  It would lock the 

critical section (mark it as in use by node A) and issue a broadcast message to the group 

stating that node A now has permission to use the critical section.  While this is 

occurring, assume that node B also issues a request for the same resource.  While waiting 

for its response, node B receives the message from the server indicating that node A has 

been given the critical section.  Node B would therefore mark the critical section as being 

in use by node A.  This also means that node B would not be able to enter the critical 

section until node A broadcasts its release message to the entire group (this is because the 

server node cannot issue permission to the same resource until it is released).  Therefore, 

the first case cannot occur and mutual exclusion is preserved. 

 In the second presented case, the server node receives two different requests for 

the same resource simultaneously.  The server node cannot issue two different responses 

for the same resource.  Instead, the server will issue one response indicating which node 

has been granted access to the critical section.  Because of the “passive” nature of the 

non-server nodes
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4.2  Deadlock 
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get the resource that it needs).  However, the node acting as the server in the developed 

algorithm has the means to deal with this situation.  In order to determine if a node is still 
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have direct knowledge of the server to have its request heard) for entrance into the critical 

section.  For the server’s part, it needs to only send one response to the entire group (as a 

result of the “passive” non-server nodes and the broadcast protocol), instead of contacting 

each node individually to notify them of its decision.  Each node accepts the incoming 

response regardless of whether or not it has requested a resource.  This whole transaction 

requires an exchange of two messages to obtain mutual exclusion.  If the server wishes to 

enter the critical section and it is open, then the number of messages required to secure 

the critical section is reduced to one (the broadcasted message to the entire group 

informing the group that the resource has been secured).  This constant number of 

messages exchanged is the minimum number of messages required to ensure mutual 

exclusion in regards to the proposed algorithm.  Here, we can fully see the benefit of 

using multicast communication in order to reduce the number of messages required to 
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in the system.  The most obvious benefit is the broadcast nature of communication 

between members of the group.  Any node wishing to communication with any or all 

nodes in the group simply broadcasts one message to the entire group.  This characteristic 

of multicast communication can be taken advantage of to reduce the number of messages 

needed to achieve mutual exclusion.  However, at the same time, the unreliable nature of 

multicast communication, the anonymity of members of the group and the constant 

fluctuations in the makeup of the membership of the group require tighter constraints on 

the synchronization of the overall state of the system.  In order to achieve mutual 

exclusion in such an environment, an algorithm must assure the system that each node 

contains the same picture of the state of the system at any given time.  This drawback of 

communication in a multicast group is addressed in the proposed algorithm by using a 

timestamp mechanism, an elected central arbitrator and the logical identification of nodes 

in order to force the synchronization of the system state and communication.  The result 

of these safeguards is assured mutual exclusion in a distributed system based on an 

underlying multicast protocol network. 

 Besides the use of multicast communication to connect the computers used in the 

developed distributed system, the combination of the techniques of message passing and 

the election of a node to act as the server also effect the implementation of the proposed 

algorithm [2,3,4,6].  The method of message passing provides a simple and effective way 

for independent members of a network to communicate with each other.  Such a scheme 

allows all relevant system information to be shared by utilizing the underlying network 

protocol.  Because of the broadcast nature of communication in a multicast group (as 

discussed above), the use of message passing is essential to bringing to fruition the idea 
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of an algorithm that assures mutual exclusion in a distributed system built on a multicast 

network.  The drawbacks of using message passing include the need to synchronize 

messages to ensure order and determine the type of messages that need to be 

synchronized.  The problem of message synchronization is directly related to the 

problems of synchronization in a multicast group, as discussed earlier.  In order to 

prevent false or outdated views of the system from propagating throughout the group, the 

system utilizes a synchronization mechanism in the form of a timestamp.  This timestamp 

must be placed in any message that has the potential to update or change another node’s 

view of the state of the system.  This control of the validity of the content of a passed 

message is essential to maintaining the integrity of the system and its state.  By imposing 

order on the technique of message passing through the use of a timestamp and logical 

clock, the proposed algorithm is able to avoid the potential drawbacks of multicast 

communication.  

 Like the inclusion of the message passing technique for communication between 
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group is not necessarily guaranteed that all nodes will have a turn as the server before 

repeating nodes.  The proposed algorithm addresses this potential problem by adding 

logical identification numbers to each node, effectively ordering the nodes for their turn 

as the server.  Therefore, each node in the system gets the chance to act as the server and 

handle the same workload before any node gets a second turn.  This is essential to 

maintaining the equal distribution of work in the system.  The inclusion and 

implementation of the technique of electing a central arbitrator further strengthens the 

synchronization of the entire system, thus reinforcing the guarantee of mutual exclusion 

made by the proposed algorithm. 

 While the proposed algorithm is capable of achieving mutual exclusion in a 

distributed system built on multicast communication, it can benefit from modifications.  

As mentioned previously, one of the major problems of a multicast group is that nodes 

can never be totally sure about the membership of the group.  Nodes do not communicate 

directly and therefore do not have direct knowledge of other members.  This is the reason 

why logical identification numbers (based on the order in which new members join the 

group) were introduced.  Future modifications should focus around stronger fault 

detection to ensure that the system
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[2,4].  Drawbacks of such an apparatus would include the possibility of having two nodes 

acting as the server concurrently.  Such a scenario could result due to the relativity by 

which nodes view the state of the system.  What appears to be inactivity on the server’s 

behalf to one node may not appear to be the same to another node.  For instance, if the 

physical connection between node A and the server is cut, node B could still 

communicate with the server and node A.  Node A could label the server as inactive, 

while node B still views the server as active.  This would cause great instability in the 

system.  This would need to be addressed by having all nodes that have taken on the role 

of the server to decide on a new server as a group (probably by choosing the node with 

the lowest logical identification number as the replacement server).  Therefore, future 

work should be dedicated to finding an optimal and safe solution to preventing the failure 

of the currently elected server.  

 The proposed algorithm provides distributed mutual exclusion for a group of 

computers that exchange messages using multicast communication.  The algorithm 

allows for nodes to join and exit the group, without compromising the promise of mutual 

exclusion.  It is distributed in the sense that each node takes a turn as the central arbitrator 

for the system, handling the same number of resource requests before the end of its term 

as server.  The number of messages required to secure entry into the critical section is 

constant and optimal in terms of the number of messages required to ensure mutual 

exclusion in the described multicast environment.  The algorithm makes use of several 

well-known distributed mutual exclusion techniques: message passing and the election of 

a node to act as the server.  Therefore, the proposed algorithm is suitable for the 
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imposition of mutual exclusion on a distributed system based on multicast 

communication. 




