
2-Dimensional Shape Categorization Using Polar Coordinate Representations

by Daniel Russo, Boston College, Class of 2002

Submitted for the completion of MC397 (Honors Thesis)

under the supervision of Associate Professor Peter Kugel

Introduction

In my experience with computer vision, the one thing that struck me most of all

was the seemingly exclusive use of rectangular (x, y) coordinates for shape

representations in template matching. It occurred to me that replacing such traditional

representations with polar coordinates – a system I had seen used all-too-little since it

was introduced to me in high school – would offer a number of advantages, especially

when shapes need to be rotated to be properly compared. For my thesis, I decided to

implement this idea, first in a one-on-one comparison situation, then for grouping like

shapes within a scene. In doing so, I was able to come up with some surprisingly

efficient algorithms, yielding promising results.

Polar Coordinates

The use of polar coordinates in this project was inspired by the fact that

rectangular coordinates are not very convenient for comparisons involving rotation.

When rectangular coordinates x and y are transformed through angle φ about the origin,

the new coordinates x’ and y’ are determined by the following equations:

x’ = x cosφ - ysinφ

y’ = xsinφ + ycosφ

For each increment of the rotation, the new coordinates need to be calculated. This

process can be simplified somewhat by saving values of the sine and cosine functions to a

table, though doing so limits the possible angle increments to those listed in the table.

Changing over to a polar coordinate system, x and y are replaced with radius r and

angle θ, which are calculated as follows:

r = sqrt(x

calculated by averaging their x and y values. The points are then translated so that the

center becomes the origin. Finally, the points are converted into their polar equivalents

using the equations described in the previous section. Shapes are stored as a doubly-

linked list of polar coordinates, sorted by their θ values, which range from -π to π. This

list, along with important attributes such as the shape’s color and the average value of r

for the points within the shape, is stored in a class known as Shape2D.

The points in the two shapes are compared based on certain specified error values

of r and θ. The error in r specifies the maximum number of pixel widths that two points

can be separated by in their radius value while still being recorded as matching each

other. The theta error, on the other hand, does not represent the maximum allowable

difference in θ on its own, but is instead a multiplier whose value is divided by 2πr* to

obtain the allowable interval. Both error values were set to 1.0 throughout most of the

testing at this stage, as this was found to be the value that produced the most accurate

results. Also, in the case of shapes of unequal size, the r values of the smaller shape were

multiplied by the ratio of the larger shape’s average r value to its own average r value,

and the errors were used with these new r values in mind. (The r error, for example, was

until all of the points in A have been checked. A result is produced by dividing the

number of points in A that were successfully matched by the total number of points in A.

The process is then repeated on shape B, producing a second result. The two results are

then multiplied together to produce the sameness value that is retuned by the program.

The reason why the process is repeated is to prevent cases where one shape is small

subset of another shape from being recorded as a perfect match, as well as to distinguish

between a small shape within a large shape and two large shapes with a small overlap.

For both stages of this project, I used 0.9 as my sameness threshold, with all shapes

above the threshold being considered a match and all those below being considered a

mismatch.

When comparing two shapes regardless of their orientation, the same basic

process is applied, but is repeated with an increasing offset being added to the value of θ

for shape A. This value is corrected for higher values of the offset so that the θ value

always stays within the interval (-π, π). Once the best match from these trials is found,

its θ offset is used to make the comparison to points in B. This entire process has a

running time of O(n3).

Standardizing Shapes

In order to facilitate the shape comparison process, I decided to institute a process

I call “standardizing”, which involves simplifying the shape representations in several

ways.

One of these simplifications consisted of normalizing the radius values of all the

points in each shape, so that they all fell between 0 (the center of the object) and 1 (the

farthest point from the center). Previously, I had been using a multiplier based on the

average value of r in both shapes to compare objects with different sizes.

A second improvement involved discarding the existing point list in favor of one

in which the points are stored at regular intervals of r and θ. In a standardized shape

(represented by the structure StdShape2D in the program), points are stored in evenly-

spaced “rings”, each of which has a set radius. Each of the points along a ring can occur

at any one of (int)2πr evenly-spaced positions. Once the number of rings, x, has been

determined, the program decides whether to put a point at each position of the

standardized shape by checking whether there is a point in the original Shape2D

representation that falls within the error ranges for r and θ, which are determined by the

function as follows:

r error = 1/x

θ error = 2π/(int)2πr

Note that the θ error cannot be simplified because its denominator must be simplified to

an integer before the division can take place.

of points, the value of x is determined by finding the largest value of x that would have a

total number of possible point positions that is less than or equal to the specified

maximum number of points. This step prevents reduces delays caused by comparing

shapes with high point totals, since point totals directly determine the running time of the

algorithm.

Stage 2: Grouping Shapes from a Scene in a BMP File

During the second stage of the project, which I will be referring to in the

examples that follow, the focus was shifted from comparing just two individual shapes to

comparing many shapes in a single image, in an effort to group together shapes that bear

a strong resemblance to each other in both shape and color. These groupings, called

“concepts”, are stored in order of decreasing popularity, so that the program can

recognize common objects faster than rare ones.

The use of standardized shapes makes the comparisons for this process

significantly faster than they were in the first stage. When comparing two shapes at a

given orientation, the program now only needs to visit each point on each shape once,

following the points around each of the rings in order. The number of different rotational

orientations that need to be tested is (int)2πx - the maximum number of points on the

outer ring of a shape, taken from whichever of the two shapes has the greater number of

rings. The error values for r and θ are the same as those used in creating standardized

shapes, taken from the shape with fewer points, since the error there is greater. The

running time for this algorithm is O((n1+n2)*sqrt(n2)), where n1 is the number of points

in the smaller shape and n2 is the number of points in the larger one. The points in n1

and n2 are each checked once in the two inner loops, and the number of rotational

positions checked by the outer loop is on the order of sqrt(n2), since it is based on the

number of the points in the outermost ring, and both the number of rings and the number

of points in each ring are based on x, making n2 the sum of the points in all the rings, of

the order x2.

Experiments

In order to test the versatility of the algorithm, I created a series of images

designed to illustrate a variety of sorting abilities.

The first of these images contains a general assortment of objects, some of which

are rounded “L” shapes, and the rest of which are squared-off “L” shapes, occurring in

two distinctly different colors:

When given the image, the algorithm produced the following output, displaying the

centers of shapes in each concept as rectangular coordinates, with (0, 0) representing the

upper left corner of the bitmap and (255, 255) representing the lower right corner:

Concepts found:
Color: Red=255, Green=0, Blue=0
Center at (25.5385,34.1923)
Center at (54.2903,216.065)
Center at (170.808,145.538)
Center at (208.73,40.5421)
Instances: 4
Color: Red=255, Green=0, Blue=0
Center at (82.2759,141.342)
Center at (159.845, 208.786)
Center at (229.99,112.24)
Instances: 3
Color: Red=255, Green=255, Blue=0
Center at (29.0645,142.71)
Center at (145.555,86.8355)
Center at (218.132,213.132)
Instances: 3

The first concept shown here contains the red squared-off “L” shapes, the second

represents the rounded “L” shapes, and the third represents the yellow squared-off “L”

shapes.

The program produced the following output:

Concepts found:
Color: Red=0, Green=128, Blue=255
Center at (67.2016,188.903)
Center at (60.5173,74)
Center at (189,188.988)
Center at (191.798,69.9029)
Instances: 4

In the third image, holes in the shapes are introduced, demonstrating why it was

important for the algorithm to use all the points in the shape for its comparisons, instead

of just those on the outer edge:

The algorithm grouped the shapes as follows:

Concepts found:
Color: Red=255, Green==0, Blue=0
Center at (71.4746,76.0269)
Instances: 1
Concepts found:
Color: Red=255, Green==0, Blue=0
Center at (180.5,75.7894)
Center at (180.553,184.95)
Instances: 2
Concepts found:
Color: Red=255, Green==0, Blue=0
Center at (71.6412,185.259)
Instances: 1

The first concept here contains the square with one hole, the second contains the squares

with two holes, and the third contains the square with three holes.

A fourth image shows how the program’s ability to deal with holes allows it to

recognize similar concentric shapes:

The algorithm recognized both shapes as representing a single concept, though the

centers of the two shapes are difficult to distinguish from each other:

Concepts found:
Color: Red=0, Green=255, Blue=0
Center at (121.04,125.8)
Center at (119.218,125.771)
Instances: 2

The fifth and final image tests one of the algorithm’s limitations as it depicts

shapes with increasing numbers of sides:

The following output was produced:

Concepts found:
Color: Red=255, Green=255, Blue=0
Center at (35.9425,44.4441)
Instances: 1
Color: Red=255, Green=255, Blue=0
Center at (118.986,36.5139)
Instances: 1
Color: Red=255, Green=255, Blue=0
Center at (118.986,36.5139)
Instances: 1
Color: Red=255, Green=255, Blue=0
Center at (63981,118.76)
Instances: 1
, Blu9:Insta.oo Red=255, Green=255, Blue=0

Center at (118.986,36.51122 Blue=0

The first four concepts represent shapes with increasing numbers of sides, from the

triangle to the hexagon. The fifth concept contains the heptagon, octagon, and nonagon,

which the algorithm could not distinguish from each other. In a way, this is similar to the

human eye, which often cannot distinguish between shapes with more than six sides

without counting the sides. (Recognition of the octagon, such as in a stop sign, is a

special case, since such recognition is based partially on the shape’s orientation)

Future Work

As I continue to develop this algorithm, I hope to increase its versatility in a

number of ways.

The first of these would be to give it the ability to process multiple files while

keeping track of the concepts it recognized from previous files. A master list of concepts

could then be stored, allowing the algorithm to learn in a more permanent manner.

I would also like to add to the program a smoothing algorithm, so that I can use

actual photographs instead of having to manufacture my own images. This would go a

long way towards moving this project from the realm of the theoretical to that of the

practical.

On a less cosmetic level, I would most like to expand on the method by which

concepts are stored. If the program were given a series of images that represent the same

scene moving over a period of time, it should be able to recognize objects as they move

through three dimensions, possibly being distorted or partially obscured. This could be

done by creating multiple instances by which a concept could be identified, since a shape

will not change much between two consecutive frames of motion, but it can change

considerably over long periods of time. Keeping the most recent objects used in a

convenient location would also be useful for this task.

I hope to make these and many other additions to the program over time. I see in

it a potential that could eventually lead to a wide variety of applications for computer

vision and human-computer interaction. However, there is still much work left to be

done before specific applications can be considered.

The following pages contain the final version of the source code used in the program.

/* Bitmap.cpp

Function definitions for Bitmap class.
*/

#include <stdio.h>
#include <iostream.h>
#include "bitmap.h"
#include "misc.h"

/* Bitmap::Bitmap(const char *filename)

Constructor for Bitmap class; reads file specified
by user.

Parameters:

 filename - name of file to be read
*/

Bitmap::Bitmap(const char *filename)
{

FILE *bmpfile = fopen(filename,"r");
int i, j;

header = new char[54];

for (i=0;i<54;i++)
fscanf(bmpfile,"%c",header+i);

x = BMP_WIDTH;
y = BMP_HEIGHT;

color = new unsigned char **[x];

for (i=0;i<x;i++) {
color[i] = new unsigned char *[y];
for (j=0;j<y;j++) {

color[i][j] = new unsigned char[3];
}

}

for (j=y-1;j>=0;j--) {
for (i=0;i<=x-1;i++) {

fscanf(bmpfile,"%c",&(color[i][j][B]));
fscanf(bmpfile,"%c",&(color[i][j][G]));
fscanf(bmpfile,"%c",&(color[i][j][R]));

}
}

fclose(bmpfile);
}

/* Scene2D.h

Contains definition of Scene 2D class, a data representation
of the scene being analyzed by the program.

*/

#ifndef _SCENE2DH_
#define _SCENE2DH_

#include "Bitmap.h"
#include "View2D.h"

class Scene2D {
protected:

int max_x, max_y; //width and height of image, respectively
Bitmap *source; //Bitmap object used to create Scene2D

//instance
unsigned char ***color; //Color values of all coordinates

//in scene

public:
Scene2D(char *bitmap);
View2D * makeView2DPtr(int x1,int y1,int x,int y,int res);
View2D * makeView2DPtr(int res) { return

makeView2DPtr(0,0,max_x,max_y,res); }
//view encompasses whole scene by default

View2D * makeView2DPtr(void) { return
makeView2DPtr(0,0,max_x,max_y,1); }

//blur is set to 1 by default
};

#endif

/* Scene2D.cpp

Function definitions for the Scene2D class.
*/

#include <stdio.h>
#include <iostream.h>
#include "Scene2D.h"
#include "Bitmap.h"
#include "misc.h"

/* Scene2D::Scene2D(char *bitmap)

Constructor for Scene2D class; takes a filename,
uses it to create a Bitmap object, then reads from
the Bitmap object.

Parameters:

 bitmap - filename of image to be analyzed
*/

Scene2D::Scene2D(char *bitmap)
{

source = new Bitmap(bitmap);

max_x = source->getX();
max_y = source->getY();
color = source->getColor();

}

/*

 bitmap - filename of image t26 10 0 0 10 90.125 5 0 10.1 0 starting coordin0 0s125 5 40vntr Tm /TT5 1 Tf (rraT 1g0);

if (x1<0) {
x -= (int)((0 - x1)/res);
x1 = 0;

}
if (y1<0) {

y -= (int)((0 - y1)/res);
y1 = 0;

}
if (x1+x*res>max_x) {

x = (int)(max_x/res);
}
if (y1+y*res>max_y) {

y = (int)(max_y/res);
}

new_color = new unsigned char **[x];

for (i=0;i<x;i++) {
new_color[i] = new unsigned char *[y];
for (j=0;j<y;j++) {

new_color[i][j] = new unsigned char[3];
}

}

for (i=x1;i<x*res;i+=res) {
for (j=y1;j<y*res;j+=res) {

color_sum[R] = 0;
color_sum[G] = 0;
color_sum[B] = 0;
for (k=i;k<i+res;k++) {

for (l=j;l<j+res;l++) {
color_sum[R] += color[k][l][R];
color_sum[G] += color[k][l][G];
color_sum[B] += color[k][l][B];

}
}
new_color[i][j][R] = color_sum[R]/(res*res);
new_color[i][j][G] = color_sum[G]/(res*res);
new_color[i][j][B] = color_sum[B]/(res*res);

}
}

return new View2D(new_color,x1,y1,x,y,res);
}

/* View2D.h

Definition of the View2D class, representing a "view", which is a
(possibly zoomed-in) portion of a Scene2D object. This class
can also create a list of shapes contained within the boundaries
of the view.

*/

#ifndef _VIEW2DH_
#define _VIEW2DH_

#include "Shape2D.h"
#include "misc.h"

class View2D
{

protected:
int x1, y1; //top left corner of the view
int x, y; //width and height of the view, respectively
int res; //zoom level of the view
unsigned char ***color; //colors of coordinates within the

//view
bool **mark; //coordinates of the view that have been

//checked for shapes
void makePoint2DList(int curr_x,int curr_y,Point2DList

*pl_address);

public:
View2D(unsigned char ***new_color,int new_x1,int new_y1,int

new_x,int new_y,int new_res);
Shape2DList makeShape2DList(void);

};

#endif

/* View2D.cpp

Shape2DList sl = NULL, new_sl, sl_counter;
Point2DList pl = NULL, pl_killer;

for (i=0;i<x;i++) { //shape-finding loop
for (j=0;j<y;j++) {

if ((!mark[i][j]) && !isBlack(color[i][j])) {
//Black pixels are assumed to be background

makePoint2DList(i,j,&pl);
new_sl = new Shape2DListData;
new_sl->s = new Shape2D(pl);
if (sl==NULL) {

sl = new_sl;
sl->next = NULL;

}
else if (new_sl->s->getColorValue() >

sl->s->getColorValue()) {
new_sl->next = sl;
sl = new_sl;

}
else if (sl->next==NULL) {

sl->next = new_sl;
new_sl->next = NULL;

}
else {

sl_counter = sl;
while (sl_counter->next!=NULL) {

if (new_sl->s->getColorValue() >
sl_counter->next->s->getColorValue()) {

break;
}
sl_counter = sl_counter->next;

}
new_sl->next = sl_counter->next;
sl_counter->next = new_sl;

}

}
while (pl!=NULL) {

pl_killer = pl;
pl = pl->next;
delete pl_killer;

}
}

 pl_address - a pointer to the point list being created
*/

void View2D::makePoint2DList(int curr_x,int curr_y,Point2DList
*pl_address)
{

Point2DList new_pl;

mark[curr_x][curr_y] = true;

new_pl = new Point2DListData;
new_pl->color = new unsigned char[3];
new_pl->color[R] = color[curr_x][curr_y][R];
new_pl->color[G] = color[curr_x][curr_y][G];
new_pl->color[B] = color[curr_x][curr_y][B];
new_pl->x = curr_x;
new_pl->y = curr_y;
new_pl->next = *pl_address;
*pl_address = new_pl;

if (curr_x>0) {
if(isSameColor(color[curr_x][curr_y],color[curr_x-

1][curr_y]) && !mark[curr_x-1][curr_y])
makePoint2DList(curr_x-1,curr_y,pl_address);

}
if (curr_x<x) {

if(isSameColor(color[curr_x][curr_y],color[curr_x+1][curr_y]) &&
!mark[curr_x+1][curr_y])

makePoint2DList(curr_x+1,curr_y,pl_address);
}
if (curr_y>0) {

if(isSameColor(color[curr_x][curr_y],color[curr_x][curr_y-
1]) && !mark[curr_x][curr_y-1])

makePoint2DList(curr_x,curr_y-1,pl_address);
}
if (curr_y<y) {

if(isSameColor(color[curr_x][curr_y],color[curr_x][curr_y+1]) &&
!mark[curr_x][curr_y+1])

makePoint2DList(curr_x,curr_y+1,pl_address);
}

}

/* Shape2D.h

Definition of Shape2D class, used for storing polar equivalents
of points forming shapes in the original image. Also contains
definitions of Ring, RingList, CenterList, StdShape2D,
Polar2DList, and Shape2DList structures explained below.

*/

#ifndef _SHAPE2DH_
#define _SHAPE2DH_

#include <iostream.h>
#include <math.h>
#include "misc.h"

//Standardized Shape structures

/* Ring

A list of polar points with equal radius values
*/

struct RingData {
float theta; //theta value of a point in the ring
RingData *next; // the next counterclockwise point in the ring

};
typedef RingData *Ring;

/* RingList

A list of Rings with different radii
*/

struct RingListData {
Ring ring;
float r; //radius of current ring
int ring_size; //maximum number of points in current ring
RingListData *next; //the next smaller ring in the list

};
typedef RingListData *RingList;

/* CenterList

A list of coordinates for centers of shapes, based on their scene
coordinates. The centers of shapes are calculated by averaging
the x and y coordinates of points within a shape.

*/

struct CenterListData {
float x;
float y;
CenterListData *next;

};
typedef CenterListData *CenterList;

/* StdShape2D

A standardized shape, consisting of a RingList containing
coordinate information, the color of the shape, a list of the
centers of known instances of the shape, and other statistical
information about the shape.

*/

struct StdShape2DData {
RingList rl; //the shape's points
int point_total, ring_total; //total number of points and rings

//in the shape
unsigned char *color; //the color of the shape (3-character

//array)
float avg_r, stddev_r; //mean and standard deviation of points

//in shape
float r_error, theta_error; //r and theta errors of shape
CenterList cl; //list of centers of known similar shapes

};
typedef StdShape2DData *StdShape2D;

//Unstandardized Shape structures

/* Polar2DList

A doubly-linked list of 2-dimesional polar coordinates, sorted by
theta.

*/

struct Polar2DListData
{

float r;
float theta;
Polar2DListData *next_cw, *next_ccw;//next clockwise and

//counterclockwise points in
//list, respectively

};
typedef Polar2DListData *Polar2DList;

/* Shape2D

An unstandardized shape, containing points sorted by their theta
values.

*/

class Shape2D {
protected:

Polar2DList pol; //the shape's points
int point_total; //the total number of points in the shape
unsigned char *color; //the color of the shape (3-

//character array)
float avg_r, stddev_r, max_r; //mean, standard deviation,

//and maximum value of r
int min_x, max_x, min_y, max_y;//minimum and maximum values
//of the shape's original x and y coordinates, based on
//their absolute positions in the BMP file
float center_x, center_y;//the coordinates of the shape's

//center, based on the coordinates of the points in the BMP
//file

public:
Shape2D(Point2DList pl);
int getColorValue(void)
{

return color[R] + color[G] + color[B];
}
int GetMinX(void)
{

return min_x;
}
int GetMaxX(void)
{

return max_x;
}
int GetMinY(void)
{

return min_y;
}
int GetMaxY(void)
{

return max_y;
}
static float sameColor(Shape2D *s1,Shape2D *s2)
{

return ((float)(abs(s1->color[R]-s2->color[R]) +
abs(s1->color[G]-s2->color[G]) + abs(s1->color[B]-s2->color[B])))/765;

}
static float sameSize(Shape2D *s1,Shape2D *s2)
{

if (s1->avg_r<s2->avg_r)
return s1->avg_r/s2->avg_r;

else
return s2->avg_r/s1->avg_r;

}
static float sameStdDev(Shape2D *s1,Shape2D *s2)
{

if (s1->stddev_r<s2->stddev_r)
return s1->stddev_r/s2->stddev_r;

else
return s2->stddev_r/s1->stddev_r;

}
float sameOrientation(Shape2D *s1,Shape2D *s2,float

r_error,float theta_error);
float sameShape(Shape2D *s1,Shape2D *s2,float r_error,float

theta_error);
StdShape2D standardize(int point_limit);
void printInfo(void) {

cout << "Color: " << color[R] << "\t" << color[G] <<
"\t" << color[B] << "\n";

cout << "Average r: " << avg_r << "\n";
cout << "Std. dev. of r: " << stddev_r << "\n";

}
};

/* Shape2DList

A linked list of Shape2D objects
*/

struct Shape2DListData {
Shape2D *s;
Shape2DListData *next;

};
typedef Shape2DListData *Shape2DList;

#endif

/* Shape2D.cpp

Function definitions for the Shape2D class
*/

#include <iostream.h>
#include <math.h>
#include "Shape2D.h"
#include "misc.h"

/* Shape2D::Shape2D(Point2DList pl)

Constructor for Shape2D class; converts a list of rectangular
coordinates to polar coordinates, then calculates the shape's
other attributes.

Parameters:

 pl - a list of recangular coordinates
*/

Shape2D::Shape2D(Point2DList pl)
{

Point2DList pl_counter;
Polar2DList new_pol, pol_counter;
double r_total = 0;
double stddev_r_total = 0;
int x_total = 0, y_total = 0;

color = new unsigned char[3];
color[R] = pl->color[R];
color[G] = pl->color[G];
color[B] = pl->color[B];

point_total = 0;
pl_counter = pl;

while (pl_counter!=NULL) {
point_total++;
x_total += pl_counter->x;
y_total += pl_counter->y;
pl_counter = pl_counter->next;

}

center_x = (float)x_total/(float)point_total;
center_y = (float)y_total/(float)point_total;

if (new_pol->r > max_r) {
max_r = new_pol->r;

}
if (pl_counter->x != center_x) {

if ((float)pl_counter->x-center_x>0.0f) {

else {
do { //standard deviation calculation loop

stddev_r_total += fabs(pol_counter->r - avg_r);
pol_counter = pol_counter->next_ccw;

} while (pol_counter!=pol);
stddev_r = (float)(stddev_r_total / (double)point_total) /

avg_r;
}

pl_counter = pl;

if (s2->avg_r==0.0f)
return 1.0f;

size_ratio = s1->avg_r/s2->avg_r;
match_total = 0;
pol_counter_1 = s1->pol;

for (i=0;i<s1->point_total;i++) {
pol_counter_2 = s2->pol;
match_found = false;
for (j=0;(j<s2->point_total) && (pol_counter_2->theta -

pol_counter_1->theta <= theta_error*PI_OVER_2/pol_counter_1->r) &&
!match_found;j++) {

if ((pol_counter_1->r==0.0f) && (fabs(pol_counter_2-
>r*size_ratio - pol_counter_1->r) <= r_error*size_ratio)) {

match_total++;
match_found = true;

}
else if ((fabs(pol_counter_2->r*size_ratio -

pol_counter_1->r) <= r_error*size_ratio) && (fabs(pol_counter_2->theta
- pol_counter_1->theta) <= theta_error*PI_OVER_2/pol_counter_1->r)) {

match_total++;
match_found = true;

}
pol_counter_2 = pol_counter_2->next_ccw;

}
pol_counter_1 = pol_counter_1->next_ccw;

}

result_2 = match_total/((float)s2->point_total);

return result_1*result_2;
}

/* Shape2D::sameShape(Shape2D *s1,Shape2D *s2,float r_error,float
theta_error)

Compares two Shape2D objects to see if they have the same
shape, regardless of orientaion. Not used in final code.

Parameters:

 s1,s2 - the two shapes being compared
 r_error - the maximum allowable error for the r value of a
 point
 theta_error - multiplier used in calculating maximum allowable
 error for the theta value of a point

Return Value:

 A decimal value between 0 and 1, where 1 indicates
 a perfect match and 0 indicates a complete mismatch.

*/

float Shape2D::sameShape(Shape2D *s1,Shape2D *s2,float r_error,float
theta_error)
{

Polar2DList pol_counter_1, pol_counter_2, pol_counter_2_start,
best_pol_counter_2_start, pol_counter_2_mark;

Shape2D *small_s, *large_s;
float size_ratio;
float result_1, result_2;
float match_total, best_match_total;
float theta_diff, theta_diff_2;
bool match_found;
int i, j, k;
long order;
float best_theta_diff;

if (s1->avg_r<s2->avg_r) {
small_s = s1;
large_s = s2;

}
else {

small_s = s2;
large_s = s1;

}

if (large_s->avg_r==0.0f)
return 1.0f;

size_ratio = small_s->avg_r/large_s->avg_r;
pol_counter_2_start = large_s->pol;
best_match_total = 0;
best_theta_diff = 0;
best_pol_counter_2_start = pol_counter_2_start;

order = 0;

for (k=0;k<large_s->point_total;k++) {
pol_counter_1 = small_s->pol;
while ((fabs(pol_counter_2_start->r*size_ratio -

pol_counter_1->r) > r_error*size_ratio) && (k<large_s->point_total)) {
pol_counter_2_start = pol_counter_2_start->next_ccw;
k++;

}
pol_counter_2 = pol_counter_2_start;
theta_diff = pol_counter_2->theta - pol_counter_1->theta;
match_total = 0;
for (i=0;i<small_s->point_total;i++) {

match_found = false;
pol_counter_2_mark = pol_counter_2;
theta_diff_2 = pol_counter_2->theta - pol_counter_1-

>theta - theta_diff;
if (theta_diff_2 < -PI)

theta_diff_2 += PI_TIMES_2;
if (theta_diff_2 <= theta_error * PI_OVER_2 /

pol_counter_1->r) {
j = 0;
while (!match_found && (j<large_s->point_total)

&& (theta_diff_2 <= theta_error*PI_OVER_2/pol_counter_1->r)) {
order++;
if ((pol_counter_1->r==0.0f) &&

(fabs(pol_counter_2->r*size_ratio - pol_counter_1->r) <=
r_error*size_ratio)) {

match_total++;
match_found = true;

}
else if ((fabs(pol_counter_2->r *

size_ratio - pol_counter_1->r) <= r_error*size_ratio) && (theta_diff_2
>= -theta_error*PI_OVER_2/pol_counter_1->r)) {

match_total++;
match_found = true;

}
pol_counter_2 = pol_counter_2->next_ccw;
theta_diff_2 = pol_counter_2->theta -

pol_counter_1->theta - theta_diff;
if (theta_diff_2 < -PI)

theta_diff_2 += PI_TIMES_2;
j++;

}
}
pol_counter_2 = pol_counter_2_mark;
theta_diff_2 = pol_counter_2->theta - pol_counter_1-

>theta - theta_diff;
if (theta_diff_2 < -PI)

theta_diff_2 += PI_TIMES_2;
if (theta_diff_2 >= -

theta_error*PI_OVER_2/pol_counter_1->r) {
j = 0;
while (!match_found && (j<large_s->point_total)

&& (theta_diff_2 >= -theta_error*PI_OVER_2/pol_counter_1->r)) {
order++;

if ((pol_counter_1->r==0.0f) &&
(fabs(pol_counter_2->r*size_ratio - pol_counter_1->r) <= r_error *
size_ratio)) {

match_total++;
match_found = true;

}
else if ((fabs(pol_counter_2->r *

size_ratio - pol_counter_1->r) <= r_error*size_ratio) && (theta_diff_2
<= theta_error*PI_OVER_2/pol_counter_1->r)) {

match_total++;
match_found = true;

}
pol_counter_2 = pol_counter_2->next_cw;
theta_diff_2 = pol_counter_2->theta -

pol_counter_1->theta - theta_diff;
if (theta_diff_2 < -PI)

theta_diff_2 += PI_TIMES_2;
j++;

}
}
pol_counter_1 = pol_counter_1->next_ccw;

}
if (match_total>best_match_total) {

best_match_total = match_total;
best_theta_diff = theta_diff;
best_pol_counter_2_start = pol_counter_2_start;

}
pol_counter_2_start = pol_counter_2_start->next_ccw;

}

result_1 = best_match_total/((float)small_s->point_total);

pol_counter_1 = best_pol_counter_2_start;
pol_counter_2 = small_s->pol;
theta_diff = -best_theta_diff;
match_total = 0;

for (i=0;i<large_s->point_total;i++) {
match_found = false;
pol_counter_2_mark = pol_counter_2;
theta_diff_2 = pol_counter_2->theta - pol_counter_1->theta

- theta_diff;
if (theta_diff_2 < -PI)

theta_diff_2 += PI_TIMES_2;
else if (theta_diff_2 > PI)

theta_diff_2 -= PI_TIMES_2;
if (theta_diff_2 <= theta_error*PI_OVER_2/pol_counter_2->r)

{
j = 0;
while (!match_found && (j<small_s->point_total) &&

(theta_diff_2 <= theta_error*PI_OVER_2/pol_counter_2->r)) {
order++;
if ((pol_counter_1->r==0.0f) &&

(fabs(pol_counter_2->r/size_ratio - pol_counter_1->r) <=
r_error*size_ratio)) {

match_total++;

return result_1*result_2;
}

/* StdShape2D Shape2D::standardize(int point_limit)

Converts the current Shape2D object into a StdShape2D structure.

Parameters:

 point_limit - maximum number of points allowed in StdShape2D
 representation being created

Return Value:

 The StdShape2D structure created from the current Shape2D
 object

*/

StdShape2D Shape2D::standardize(int point_limit)
{

StdShape2D new_ss = new StdShape2DData;
Ring r_counter;
RingList rl_counter;
Polar2DList pol_counter;
float curr_theta, theta_inc;
float r_total = 0.0f, stddev_total = 0.0f;
bool match_found;
int i, j;

new_ss->cl = new CenterListData;
new_ss->cl->x = center_x;
new_ss->cl->y = center_y;
new_ss->cl->next = NULL;

new_ss->color = new unsigned char[3];
new_ss->color[R] = color[R];
new_ss->color[G] = color[G];
new_ss->color[B] = color[B];

if (point_total<=point_limit) {
new_ss->ring_total = (int)max_r;

}
else {

new_ss->ring_total = (int)((sqrt(4*point_limit/PI+1)-1)/2);
}

new_ss->r_error = 1.0f/(float)new_ss->ring_total;
new_ss->theta_error = PI_TIMES_2/(float)((int)(PI_TIMES_2 *

new_ss->ring_total));
new_ss->point_total = 0;
new_ss->rl = new RingListData;
rl_counter = new_ss->rl;

for (i=new_ss->ring_total;i>0;i--) { //StdShape2D creation
loop

rl_counter->ring_size = (int)(i*PI_TIMES_2);

r_counter = r_counter->next;
} while (r_counter!=rl_counter->ring);

}
rl_counter = rl_counter->next;

} while (rl_counter!=NULL);

new_ss->stddev_r = stddev_total/new_ss->point_total;

return new_ss;
}

/*

theta_1_adjusted = r_counter_1->theta +
theta_diff;

if (theta_1_adjusted>PI) {
theta_1_adjusted -= PI_TIMES_2;

}
if (theta_1_adjusted>last_theta_1_adjusted) {

r_counter_1 = r_counter_1->next;
}

} while (theta_1_adjusted>last_theta_1_adjusted);
r_counter_1_start = r_counter_1;
ring_1_start = true;
ring_2_start = true;
do { // Ring comparison loop

theta_1_adjusted = r_counter_1->theta +
theta_diff;

if (theta_1_adjusted>PI) {
theta_1_adjusted -= PI_TIMES_2;

}
if (fabs(theta_1_adjusted-r_counter_2->theta) <

s1->theta_error/rl_counter_1->r-0.0001f) {
if (ring_2_start) {

match_total_2++;
match_found = true;
r_counter_2 = r_counter_2->next;
ring_2_start = false;

}
else if (r_counter_2!=rl_counter_2->ring)
{

match_total_2++;
match_found = true;
r_counter_2 = r_counter_2->next;

}
else {

r_counter_1 = r_counter_1_start;
}

}
else if (theta_1_adjusted>r_counter_2->theta) {

if (ring_2_start) {
r_counter_2 = r_counter_2->next;
ring_2_start = false;

}
else if (r_counter_2!=rl_counter_2->ring)
{

r_counter_2 = r_counter_2->next;
}
else {

r_counter_1 = r_counter_1_start;
}

}
else {

if (match_found && new_ring_1) {
match_total_1++;

}
match_found = false;
if (ring_1_start) {

r_counter_1 = r_counter_1->next;
ring_1_start = false;

}
else if (r_counter_1!=r_counter_1_start)
{

r_counter_1 = r_counter_1->next;
}
else {

r_counter_2 = rl_counter_2->ring;
}

}
} while ((r_counter_1!=r_counter_1_start) ||

(r_counter_2!=rl_counter_2->ring));
rl_counter_2 = rl_counter_2->next;
while (rl_counter_2!=NULL) {

if (rl_counter_2->ring!=NULL)
break;

else
rl_counter_2 = rl_counter_2->next;

}
new_ring_1 = false;
while ((rl_counter_1!=NULL) && (rl_counter_2!=NULL))
{

if ((fabs(rl_counter_1->r-rl_counter_2->r) <
s1->r_error-0.0001) && (rl_counter_1->ring!=NULL) && (rl_counter_2-
>ring!=NULL))

break;
if (rl_counter_1->r>rl_counter_2->r) {

while (rl_counter_1!=NULL) {
if (((rl_counter_1->r <

rl_counter_2->r) || (fabs(rl_counter_1->r-rl_counter_2->r)<s1->r_error-
0.0001)) && (rl_counter_1->ring!=NULL))

break;
rl_counter_1 = rl_counter_1->next;
new_ring_1 = true;

}
}
else {

while (rl_counter_2!=NULL) {
if (((rl_counter_2->r<rl_counter_1-

>r) || (fabs(rl_counter_1->r-rl_counter_2->r)<s1->r_error-0.0001)) &&
(rl_counter_1->ring!=NULL))

break;
rl_counter_2 = rl_counter_2->next;

}
}

}
} while((rl_counter_1!=NULL) && (rl_counter_2!=NULL));
result = ((float)match_total_1/(float)s1->point_total) *

((float)match_total_2/(float)s2->point_total);
if (result>best_result) {

best_match_total_1 = match_total_1;
best_match_total_2 = match_total_2;
best_result = result;

}
theta_diff += theta_inc;

} while (theta_diff<PI_TIMES_2);

return best_result;

}

/* bool Concept::isInstance(StdShape2D nominee)

Determines whether or not a shape is a member of this concept.

Parameters:

 nominee - Shape being compared to current concept.

Return Value:

 Boolean value answering the question, "Is the new shape
 an instance of the current concept?"

*/

bool Concept::isInstance(StdShape2D nominee)
{

CenterList cl_counter;

if ((sameShape(nominee,s)>=MIN_SAMENESS) &&
(sameColor(nominee,s)>=MIN_SAMENESS)) {

instances++;
cl_counter = s->cl;
while (cl_counter->next!=NULL) {

cl_counter = cl_counter->next;
}
cl_counter->next = nominee->cl;
if (nominee->point_total>s->point_total) {

nominee->cl = s->cl;
s = nominee;

}
return true;

}
else {

return false;
}

}

/* void Concept::printStdShape(void)

Displays information about the current concept's color
and intstances.

*/

void Concept::printStdShape(void)
{

CenterList cl_counter;

cout << "Color: Red=" << (int)s->color[R] << ", Green=" <<
(int)s->color[G] << ", Blue=" << (int)s->color[B] << "\n";

cl_counter = s->cl;

while (cl_counter!=NULL) {
cout << "Center at (" << cl_counter->x << "," <<

cl_counter->y << ")\n";
cl_counter = cl_counter->next;

}
}

/* Tommy.h

The Tommy class, responsible for using the other classes to
extract shapes from image files and for categorizing the shapes
into concepts.

*/

#ifndef _TOMMYH_
#define _TOMMYH_

#include "Concept.h"
#include "misc.h"

class Tommy {
protected:

ConceptList cl, last; //the list of known concepts, and
//the last concept in that list

public:
Tommy(int a);
void processFile(char *bitmap);
void addConcept(Concept *new_c);
void printConceptList(void);

};

#endif

/* Tommy.cpp

Function definitions for the Tommy class.
*/

#include <stdio.h>
#include <iostream.h>
#include "Tommy.h"
#include "Scene2D.h"
#include "View2D.h"
#include "Shape2D.h"
#include "Concept.h"

/* Tommy::Tommy(int a)

The constructor for the Tommy class; creates an empty concept
list.

Parameters:

 a - a dummy variable created to fix a glitch in the compiler
 that caused the default constructor to be called instead of

s0a/4ParT5 1wc BT T5 1 Tf (/*) Tj ET
BT 10 0 0 10 126.125 af/TT5 1 Tf (Paramtu5e.417iostream.h>) Tj ET{ 10 126.125 41 Tfs0a/5 Tm /TT405ommy class.Paramtu5e.383iostream.h>/*

/*

s0a/4ParT5 1w247iostream.h> 10 90 *v; 10 126.125 41 Tfs0a/5 Tm /TT202"Shape2D.h"

if (std!=NULL) {
cl_counter = cl;
while (cl_counter!=NULL) {

if (cl_counter->c->isInstance(std))
break;

cl_counter = cl_counter->next;
}
if (cl_counter==NULL) {

addConcept(new Concept(std));
}
sl_counter = sl_counter->next;

}
}

}

/* void Tommy::addConcept(Concept *new_c)

Adds a new concept to the concept list, which is sorted in
order of decreasing numbers of instances.

Parameters:

 new_c - the new concept
*/

void Tommy::addConcept(Concept *new_c)
{

ConceptList cl_counter, new_cl;

new_cl = new ConceptListData;
new_cl->c = new_c;
new_cl->next = NULL;

if (cl==NULL) {
cl = new_cl;

}
else {

cl_counter = cl;
while (cl_counter->next!=NULL) {

if (new_c->getInstances()>=cl_counter->c-
>getInstances()) {

new_cl->next = cl_counter->next;
cl_counter->next = new_cl;
break;

}
cl_counter = cl_counter->next;

}
if (cl_counter->next==NULL) {

cl_counter->next = new_cl;
}

}
}

/* void Tommy::printConceptList(void)

Displays information on all of the concepts in the concept list.
*/

void Tommy::printConceptList(void)
{

ConceptList cl_counter = cl;

while (cl_counter!=NULL) {
cl_counter->c->printStdShape();
cout << "Instances: " << cl_counter->c->getInstances() <<

"\n";
cout << "\n";
cl_counter = cl_counter->next;

}
}

/* misc.h

Miscellaneous constants, structures and
function headers that didn't fit under any
one class.

*/

#ifndef _MISCH_
#define _MISCH_

#define PI 3.14159265f //Value of PI
#define PI_OVER_2 1.57079633f //Value of PI/2
#define PI_TIMES_2 6.28318531f //Value of PI*2

#define BMP_WIDTH 256 //width, in pixels, of BMP file
#define BMP_HEIGHT 256 //height, in pixels, of BMP file

#define MAX_DIST 1000000.0f

#define R 0 //red value in a color array
#define G 1 //green value in a color array
#define B 2 //blue value in a color array

#define MIN_SAMENESS 0.9f //threshold for determining whether two
//colors or shapes are the same

//"type" values for Tommy constructor; not used in current program
#define LOAD_TOMMY 0;
#define NEW_TOMMY 1;

#define POINT_LIMIT 5000 //maximum number of points in allowed in
//a standardized shape

/* Point2DList

A linked list of rectangular integer coordinates
*/

struct Point2DListData
{

int x, y;
unsigned char *color; //color at coordinate (x.y)
Point2DListData *next;

};
typedef Point2DListData *Point2DList;

bool isBlack (unsigned char *c);
bool isSameColor(unsigned char *c1,unsigned char *c2);

#endif

#include "misc.h"

/* isBlack(unsigned char *c)

Determines whether a given color value is black

Parameters:

 c - A color value, stored as a 3-character array

Return Value:

 "Is the specified color black?"
*/

bool isBlack(unsigned char *c)
{

return (c[R]==0) && (c[G]==0) && (c[B]==0);
}

/* isSameColor(unsigned char *c1,unsigned char *c2)

Determines whether two color values are exactly the same

Parameters:

 c1, c2 - the two colors being compared.

Return Value:

 Are the two specified colors exactly the same?
*/

bool isSameColor(unsigned char *c1,unsigned char *c2)
{

return (c1[R]==c2[R]) && (c1[G]==c2[G]) && (c1[B]==c2[B]);
}

/* testmain.cpp

Location of the main function, which uses an instance of the
Tommy class to convert a BMP file into a list of Concept objects.

*/

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include "Bitmap.h"
#include "Scene2D.h"
#include "View2D.h"
#include "Shape2D.h"
#include "Concept.h"
#include "Tommy.h"
#include "misc.h"

void main(void)
{

char bmp[40];
Tommy *t;
char end;
int x = (int)22.9;

cout << "Enter name of the image to examine: ";
cin >> bmp;
t = new Tommy(0);
t->processFile(bmp);
cout << "The image contained the following distinct concepts:\n";
t->printConceptList();
cin >> end;

}

