

Boston College

Computer Science Department

Senior Thesis 2002
Cristopher Stauffer

Real-Time Terrain Rendering and Scene Graph Management
Prof. William Ames

o

y, and z locations are now necessary because the vertices are no longer

guaranteed to be a constant distance apart. A problem existing within pre-

rendering reduction is that these data points are physically lost within the data

model, so that for applications demanding visual representation based upon

constant separation, such as charting or measurements of coordinates, would be

unable to easily find a data-set readily available without costly interpolation.

Further the data reduction may not occur in more trafficked areas, as such is

within land simulation in which travel upon water-ways is not reasonable, and

therefore rarely falls into the viewable area. [Savch00]

 A model and management system is necessary therefore to both manage

the data, in which data reduction can occur in the correct locations, and at the

same time offers reasonable memory requirements and expandability of detail

and scope. In order to manage a model for terrain rendering, it is necessary to

create a scene graph model in which an order of data can be efficiently managed

within the program. A scene graph is the hierarchical structure by which an

entire tree- representing the virtual world- is organized for efficiency and easy

management. This model allows not only the efficient rendering of terrain but

also the management of data and objects within the world defined by our

program. [Eberl99]

The scene graph within this paper is derived from the class Entity, from

which all other classes are derived from within the scene graph. The Entity object

at its simplest level is a node object comprised of a parent, a child, and two

siblings who share the same parent. This structure allows for a tree consisting of

any object derived from the Entity class, and therefore allows the creation of tree

maintain synchronized decisions among objects as well as output debugging as

well as user-useful information to the screen.

Super Class Structure Scene Graph Tree

The hierarchical design of the tree also allows for as many children as needed to

be tested for visibility through a bounding sphere test used upon the parent

renderer and the objects contained within. It is also possible to include just

empty bounding nodes as a binary or octree structure in order to partition the

space.

 The model used for the terrain rendering was based upon the principle of

"Level of Detail" or LOD. The concept of a LOD algorithm is to create a model by

which the sharpest amount of detail is reserved solely for the closest terrain to

the camera view. The level of detail, or amount of vertices used per specific

region, is inversely proportional to the distance the section of terrain is from the

camera view. This level of detail, in most models, is bound by a lower limit of

detail in which one primitive is used to draw the entire terrain, to the upper limit

in which every vertex within the data set is being represented by a point on the

map [Linds96]. A LOD algorithm therefore offers a distinct advantage over other

data algorithms, in that the algorithm allows the data which is immediately

being viewed in the near vicinity to be rendered in its fullest detail, while saving

computation and rendering time by simplifying the data set in the distance. The

reason why this concept is plausible is because any data rendered at a distance,

when transformed through the models perspective matrix, will resolve to a much

less detailed image. Objects therefore at a distance collapse there own detail, so it

is wasteful for the graphics model to attempt to draw discarded vertices. This

model however, cannot be pre-calculated as could a pre-rendering vertex

reduction algorithm. LOD algorithms must be dynamic, and the computation

time to create this revised structure of the data set must still maintain a desirable

frame rate. The LOD algorithm must also be scalable, in both detail and scope,

and offer a reasonable requirement of memory. The final requirement when

approaching an LOD algorithm is that it must be cost-effective to be able to

integrate such features as lighting normals, primitive color blending, and

texturing.

 In exploring the world of LOD models, the search for such a model which

coincided with the demands listed above was found in part within a quad-tree

LOD algorithm originally explored by Stefan Rottger.[Rottg98] Rottger's

algorithm was chosen as a base for a final LOD model because of its simplicity in

design, and its ability to be easily integrated with other features of the scene

graph. The description that will follow in this paper will pay close attention to

the details of the author's modified quad tree algorithm, and will note those

feature which were originally a part of Rottger's design, as well as those sections

added or modified.

 The concept of the quad-tree algorithm is the representation of a height

field through series of recursive quads, for which the root quad encompasses the

four corners of the height field as well as the center of the height field. By this

description alone, a quad-tree then requires a height field of equal height and

width, and in which the length of a side is an odd integer. Further more the

recursive nature of the quad-tree, in which a quad is broken into four equal area

quads, requires that the width of each quad be a power of two. Therefore the

height field is bound to sizes 2^n + 1. This ensures that a height field can be

recursively split using quads until each vertex is covered by the side or center of

a quad. This model therefore allows for the total representation of a data set if

each of these highest level quads are rendered. The most efficient choice for

rendering these quads however is through the use of triangle fans. The triangle

fan model with a quad has a center point located at the center vertex of the quad,

and then up to 8 vertices to which it draws. Within the quad-tree model, the

highest level of detail therefore is a quad that is 3 X 3 with the center point

located at the location (2, 2). The triangle fan model therefore can, at highest

resolution represent every vertex in the data-set.

 The essential concept of the quad-tree LOD algorithm though is the

function which decides when a quad requires more detail, and in what way does

the quad tree split to give that new detail. The method by which Rottger's model

determines the need for further detail is begun through the expression:

L/Q < C

In the above expression L is the distance from the camera view to the center of

the quad; Q is the quad width, and C is some constant intended to control the

amount of detail represented in the scene. As the value of C increases, the level of

Rings Of Detail

 The process within Rottger's model as well as other designs is based upon

the principle of rendering the absolute minimum vertices necessary while

maintaining a certain resolution and frame rate. This has led the Rottger model

to follow the principle of testing for a quad's necessity to split into further detail,

and then to test within each child quad whether the split within this quadrant is

necessary. This process allows only some of the quads within the parent quad to

be split with more detail, which appears at its creation to offer a distinct savings

in rendering, but in truth it introduces many additional disadvantages. One

disadvantage is that extra distance calculations must occur when the quad is split

to decide if the new child quads are within the area deemed necessary for further

detail. This forces the child node to decide whether it should split further,

represent its new vertices without split, or simply represent the vertices visible

by the parent. Further, upon a split, by testing each child to see if it should reflect

the new vertices or if it should maintain the detail of the parent, it removes the

children's ability to know the detail level of each other, and therefore put that

information into saving computation time.

algorithm. To remedy this problem, Geo-Morphing manages the newly

introduced by ensuring that there initial introduction value will not vary from

the average of the two points across the line which the new point is introduced.

The split function supports this easily by continually producing values within

the range of 1.0 - 2.0. By subtracting from these values by 1.0, a weight average

can be used on the new point so that at initial introduction, where the split

function S is equal to 2.0, the weighted average of point pNew across parent

 The use of Geo-Morphing however introduces a problem in the

interpolation of new points of detail. If two quads are both rendering points at

the same level of detail, there will exist a small difference in the values of their

respective split functions, so that the interpolated values calculated by each quad

for the shared points will be slightly different. This causes cracks in the terrain,

which are considered unacceptable as a feature of an LOD algorithm. This

causes a revision of both the LOD algorithm implemented within this paper as

well as most other LOD algorithms. In order to solve this problem, two passes

B. Include North, West, East, and South data points if the respective

neighbor is of an equal or greater level of detail.

C. For each side, if the neighbor is of equal level of detail, use the greater

of the two split function values to ensure continuity.

D. For each side, if the neighbor is of a lesser level of detail, ensure that

corner point of the node which is the middle point of the neighbor

node is computed by using the split function of the neighbor

The necessity of knowing the level of detail of a node's neighbor is therefore

critical during the rendering process. This necessity is simplified and optimized

by altering Rottger's algorithm by splitting a quad into 4 individual quads when

the split value is dropped below the threshold. So within the model developed

within this paper, a node always has critical information always about three of

its neighbors because it knows that its siblings were split as well. This becomes

important when features such as texturing, primitive coloring, and lighting

becomes important facets in the model design.

 One factor introduced into the concept of LOD algorithm for which Geo-

Morphing cannot solve is the case of extreme changes in height values within the

height field. This can observed in the case where a quad's split value has recently

fallen under the split value threshold, and in which the new data points do not

yet change the shape of the surface. The problem however is that for larger and

larger differences between the averaged value of the parent nodes and the final

value for the new node, the greater the changes will appear for each step closer.

So while Geo-morphing works well for introducing slight variations into the data

field, it cannot handle extreme aberrations from the normal without

compromising the guarantee of a fully detailed and realistic view.

CenterNodeError= Abs((

naturally disallow further splitting of the quad because of the wastefullness of

further calculations for only minor detail. The split function is therefor modified

to incorporate error through the function:

Split Value = Distance / (Quad Width * Maximum Detail * Node Error)

 Within the LOD model described in this paper, the error value has been

minimized because of its lack of accuracy to described the uniqueness of the new

data point introduced. This is realized because of the incorporation of both

primitive coloring as well as lighting effects. Therefore while the previous

computation to find the error involved in introducing a new data point provided

an optimized interpretation of height data, it does not take into consideration the

possible introduction of lighting and material effects or primitive coloring that

would have provided further detail. Due to this lack of incorporation, it seems

reasonable to further revise the split function so that it only offers more detail

and never attempts to remove detail from a quad. This obviously means a higher

number of triangle fans being drawn, but is a necessary step so that important

detail in lighting and colors are not removed permanently. This newly revised

 The use of textured primitives within the LOD algorithm can only supply

a minimal amount of variation across the terrain. Even the use of multiple

points, so that their new detail is slowly introduced into the scene. Lighting

however suffers from the problem that the vertex normals in the field computed,

as being the average of the face normals of the 8 triangles sharing the vertex, will

incorrectly represent the lighting normals of a single vertex, based upon the

References

[Linds96] Lindstrom et al., Real- Time Continuous Level of Detail Rendering

of Height Fields, Proceedings of SIGGRAPH, 1996
.
[Rottg98] Rottger et al., Real-Time Generation of Continuous Levels of Detail

for Height Fields, Proceedings of SIGGRAPH, 1998.

[Eberl99] Eberly, D. 3D Game Engine Design. San Diego: Academic Press, 1999.

[Savch00] Savchenko, S. 3D Graphics Programming Games and Beyond.

Indianapolis: Sams Publishing, 2000.

[Morle00] Morley, M. Frustum Culling in OpenGL.

Http://www.markmorley.com/opengl/frustumculling.html

